Best Workstation Computer for 3D Modeling and Rendering

CG Director Author Alex Glawion  by Alex Glawion   ⋮   ⋮   1,164 comments
CGDirector is Reader-supported. When you buy through our links, we may earn an affiliate commission.
Best Workstation Computer for 3D Modeling and Rendering

The most interesting thing about looking for a Computer or Workstation for 3D Modeling and Rendering, is the fact that 3D Modeling and (CPU) Rendering are two very different use cases.

Both use the Hardware of a Computer in very different ways!

Before we dive into it, take a quick look at the Table of contents here, in case you prefer to skip the theory and want to know my recommendations immediately:

CPU Rendering

CPU Rendering uses all cores of your CPU, 100% of the time while rendering.

This means, if you’ll use your Workstation just for 3D Rendering Images and Animations, or encoding Videos for that matter, you would be looking for a Computer with a CPU, that has as many cores as possible

Even if these cores are clocked relatively low.

This is because the render engine assigns a so-called “bucket” to each core in your CPU. Each individual core will render its bucket and then get a new bucket once it’s finished rendering the old one.

Perfect for Multi-Core CPUs.

CPU Rendering CPU Cores Buckets

3D Modeling

Contrary to rendering, 3D modeling is an active working process.

You (usually) sit in front of your computer and interact with the 3D Software.

Actively using a Software utilizes the Hardware it is running on in entirely different ways.

Take this example: I am modeling a car. That Car consists of Polygons that will have modifiers and Deformers applied to it, such as Mirroring, Cloning, Bending Objects and so on.

Your computer has to go through some serious calculations to process all this, but the key here is that these calculations are mainly done on only a SINGLE CPU Core.

Why? Because the Scene is built according to a certain hierarchy. A CPU has to work its way through this hierarchy step by step.

It can’t skip or off-load certain steps to other cores, because most of the steps depend on each other!

hierarhcyOrderOfExecution

What does this mean?

It means quite frankly that having lots of CPU-Cores will do nothing towards speeding up your modeling and does not usually make your Viewport faster.

Long explanation short:

For Modeling and actively working in your 3D Scene,  you would need to get a CPU that has the highest Clock Speed possible.

It doesn’t matter if it only has a few Cores, as most of these Cores won’t be used for modeling.

Take a look at this page to find the highest clocking CPUs currently available.

Same is also valid for working on Computer Animations or for running a CAD Workstation. A high-Clocking CPU will almost always outperform a high-Core-count CPU.

If you had to pick one: Which do you consider your main 3D Software?

The more Cores and the higher the clock speed, the better, right?

It’s now tempting to think you should get a CPU with lots of cores AND high clock speeds. After all, then we’ll have a workstation on which we can work fast AND which can render fast, right?

Unfortunately, because of power consumption and heat limits, there usually is a proportional trade-off between the number of CPU-cores and clock-speeds.

This means the more Cores the CPU has, the lower it will usually clock and vice versa.

The faster the Cores are clocked, the fewer cores there usually are on the CPU.

Many Cores need lots of Power and lots of Power produces lots of heat. CPUs have thermal regulations that need to be adhered to. The same applies to higher clocked cores that will be hotter than lower clocked cores.

This is quite a bummer, but the major CPU Manufacturers wouldn’t be all that major if they hadn’t found a way to improve upon this.

AMD and Intel have thought of a nice way of compensating for some of these trade-offs.

Enter Turbo-Boost.

Turbo-Boost (Turbo-Core)

Turbo-Boost is a feature that automatically overclocks Cores until thermal and power limits are reached. Depending on the Quality of cooling, duration can vary.

Say we are currently modeling and are only really using 1-2 Cores, the rest of the Cores are idle.

What Turbo boost does now is overclock these 1-2 Cores as far as specified by the manufacturer and as long as the Power Consumption and Temperature stays within the predefined limit.

As soon as these limits are reached, the Turbo-Boost will clock these two cores back down.

turboBoost

Image-Source: Intel

This way, to a certain degree, we can get CPUs with more Cores (and a low base-clock), that clock higher on limited cores, when needed and not all cores are being used.

CPU vs GPU Rendering

There are currently two popular methods of Rendering Images and Animations in 3D Software: CPU Rendering and GPU Rendering.

Are you mainly rendering on the GPU or CPU?

As you probably guessed, CPU Rendering utilizes the Processor for calculating the Image, and GPU Rendering utilizes the Graphics Card.

There are some differences in GPU and CPU rendering that you want to be aware of when choosing a new Computer or Workstation for 3D Rendering and Modeling:

First of all, almost every popular 3D Software comes with an inbuilt CPU Render Engine nowadays.

Only recently have GPU Render Engines such as Octane, Redshift,  V-RAY RT or FurryBall become mature enough to slowly but surely overtake CPU Render Engines in popularity.

In popularity, because GPU Render Engines are much faster in many cases and allow for extremely interactive preview Renderers.

This can improve and accelerate a 3D-Artists Workflow by a tenfold as you are able to iterate more often before finishing a project.

Furryball

Image-Source: furryball.aaa-studio.eu

Beginners are often told to start with 3D Rendering on the CPU and later switch to (often) costly 3rd Party GPU Render Engines when they have learned enough to properly utilize them.

I think this is about to change.

Just look at Blenders in-built Cycles GPU Render Engine and Cinema 4Ds new ProRender GPU Render Engine.  Both GPU render engines are built into the software itself and don’t rely on third-party plugins.

If you had to pick one: Which do you consider your main Render Engine?

Best individual Hardware Parts for 3D Modeling and Rendering explained

But enough talk! Let’s take a look at what specific Computer Parts you’ll need for the best Computer or Workstation for 3D Modeling and Rendering:

Best Processor (CPU) for 3D Modeling and Rendering

For Active Work: Intel i9 9900K or AMD Ryzen 3900X

As explained above, you’ll have to make a decision depending on what you will use your computer most for.

Do you use it mainly to Model, Sculpt, Texture, Light, Animate and you spend much more time actively on it, than rendering on it?

Then you’ll want a CPU that is clocked as high as possible!

Good choices here are:

  • Intel i9 9900K, 8-Cores, Clocked at 3,6 GHz Base, 5 GHz TurboBoost
  • Intel i7 9700K, 8-Cores, Clocked at 3,6 GHz Base, 4,9 GHz TurboBoost (No Hyperthreading)
  • AMD Ryzen 9 3950X, 16-Cores, Clocked at 3,5 GHz Base, 4,7 GHz TurboBoost (Turbo Core)
  • AMD Ryzen 9 3900X, 12-Cores, Clocked at 3,8 GHz Base, 4,6 GHz TurboBoost (Turbo Core)
  • AMD Ryzen 7 3700X, 8-Cores, Clocked at 3,6 GHz Base, 4,4 GHz TurboBoost (Turbo Core)
AMD Ryzen vs i7 8700K

Image-Source: AMD/Intel

A great benchmark for finding CPUs that are the snappiest is the Cinebench Single Core Benchmark.

Take a look at this page with Cinebench R20 Benchmarks and sort the Table on the “Cinebench Single” column to find the CPU that will give your workstation the best performance when you’re actively working on it.

What CPU Core-Feature is more valuable / important to you?

If you have the budget for an AMD Ryzen 9 3900X, this CPU is currently the best CPU for active Work such as Modeling and Animation. It also sports 12 Cores which gives you nice multi-core rendering performance.

Texturing 3D Models and painting or sculpting, too, need a high-clocking CPU. So if you consider yourself a Graphic Designer, the AMD Ryzen 9 3900X is an excellent choice.

For Render Work? AMD Threadripper CPUs such as the Threadripper 3960X!

Do you use this Workstation less for active work and more to Render out your Projects? Do you spend more time on Rendering than on actually sitting in front of it?

You should consider going into a high core-count direction which are the best CPUs for Rendering (Or if you want a second Computer just for Rendering on).

Good choices here are:

  • AMD Threadripper 3960X, 3970X, 3990X – 24-64 Cores – Highly Recommended!
  • Intel i9 9900X, 9920X, 9960X, 9980XE – 10-18 Cores (quite expensive)

If you want to use VRAY, as it is one of the most popular Render Engines available, have a look at the following page to get an overview of the VRAY CPU Benchmarks Results.

AMD Threadripper 3990X Heat Spreader Bare Photo

The 3990X inside our Review System

Because Rendering demands can be quite high, and a single PC might not be enough to crunch through all of your frames in a short time, be sure to check our Guide on building your own Render Farm.

Which CPU are you planning on Buying?

Best Graphics Card (GPU) for 3D Modeling and Rendering

Best GPU for GPU Rendering: GPU Rendering is becoming more popular as we speak and is likely to overtake CPU Rendering in the near future.

Some of the most popular modern GPU Render Engines are Octane, Redshift, VRAY-RT, and Cycles. The first two only support NVIDIA GPUs, while the latter also support AMD (OpenCL) GPUs.

Personally, I prefer recommending GPUs that work with any of the above Render Engines (CUDA Support), so here are a few NVIDIA GPUs in order of Performance that will give you excellent GPU Rendering Speed:

This Nvidia List could go on, but I think you get the gist.

The higher the number, the faster and the more expensive they get.

Nvidia GPUs 3D Modeling and Rendering

Image-Source: gamespot.com

Here is a GPU Render Benchmark overview if you’d like to compare the cost to performance in a bit more detail.

Other great GPU Benchmarks to take a look at are the VRAY-RT, Octane, and Redshift benchmarks.

In more Detail: Why no AMD GPUs?

The question of why we are not recommending AMD GPUs at this time is certainly warranted.

While you can certainly do most of the 3D work with a Radeon RX 5700XT or a similar AMD GPU Model, NVIDIA GPUs just have a much wider support in GPU Render Engines and tend to perform better in many workloads.

While there might be some Engines that support AMD’s GPUs, all of them support NVIDIA GPUs. If you want to be able to jump into different Apps and Engines, going Nvidia is currently the better decision.

AMD Radeon RX 5700 XT

Image-Credit: AMDThis might just be temporary though, as many Render Engine Developers have announced to work on implementing AMD GPU support.

Of course if you know exactly that you will be using ProRender or other Engines with AMD GPU Support, go for it! AMD’s offerings have great value.

Best GPU for Viewport performance

As the Processor is usually the bottleneck in having a snappy Viewport, Graphics Cards shouldn’t usually make a noticeable difference, if you buy good enough.

All the GPUs listed above will perform roughly the same in Viewport performance.

This is because there are rarely features in 3D Applications, that the GPU computes slower than it takes the CPU to update Meshes, Deformers and the like.

In other words: The GPU usually has to wait for the CPU to finish its tasks to continue working.

This being said, if you rely heavily on In-Viewport SSAO, Reflections, AO, Anti-Aliasing and the like, you might want to lean towards the top of the above GPU list for a snappy Viewport.

But for most, a high clocked-CPU will make a much larger difference.

Let’s pick the Nvidia RTX 2070 for our Best Computer for 3D Modeling and Rendering, as it has excellent GPU-Render value and is fast enough for any kind of Viewport challenges.

Nvidia RTX 2070

Image-Source: Nvidia

A quick heads-up:

In rare cases if you only use a few extremely high-poly RAW meshes (such as a CAD-Converted Car with 40 Million Polygons) and you don’t have any modifiers on this mesh, then the GPU will probably be the bottleneck as your workstation only has to update the viewing angle of the Car and not the meshes underlying structure.

Do take a look at our Viewport-Performance Benchmark and top performing CPUs here.

How much and what Type of RAM (Memory) do you need for 3D Modeling and Rendering?

Similar to the CPU, the amount and type of memory (RAM) you’ll need will depend on your use case.

If you work on models with extremely high polygon counts, you will want more RAM than if you usually only do lightweight 3D work with simpler scenes.

I recommend 32GB of RAM for most 3D Artists.

If you sculpt or work on high-poly meshes, use lots of large textures or have complex scenes with thousands of objects in them, you might want to go with 64GB of RAM.

16 GB of RAM can be enough for many starting out with 3D, but usually, you outgrow this quite quickly.

Corsair RAM for Computer for 3D Modeling and Rendering

Image-Source: gskill

RAM speeds & timing can normally be ignored, as these don’t make much of a difference performance-wise.

Getting DDR4-4166 RAM won’t be noticeably faster than DDR4-2666 RAM.

That said, AMD Threadripper does benefit more from higher clocked RAM than Intel CPUs do. This is due to the fact, that some components on Threadripper CPUs are linked to the Memory Clock speed.

So having Quad Channel Memory that is clocked at 2933Mhz might give you a few percents more performance on Threadripper CPUs.

If you do like to optimize your hardware as much as possible, the rule is usually:

The lower the CL and higher the Clock Speed, the better. So a DDR4-3200 CL15 would be slightly faster than a DDR4-2800 CL16 for example.

The new 3rd gen AMD Ryzen CPUs too, benefit from higher clocked RAM.

A note on RAM Kits

When buying RAM, buy the full amount in a single RAM kit. RAM Kits (which are RAM Modules packaged together) are pre-tested in the Factory and will work well together.

Although people often say you can buy some RAM now and add some more laterRAM modules sometimes don’t work well together.

So if you are getting entirely new RAM for your PC, be sure to get (for example) 4x8GB in a KIT and not 2x8GB + 2x8GB in two separate KITs.

Why should RAM in different KITs be different from each other?

The reason why RAM in different kits differ from each other is because they can be manufactured in different factories and different factory lines that use slightly different silicon, or because one RAM module might have been manufactured in 2017, while the other module was manufactured in 2019. You don’t know for sure that the timing on the RAM will be exactly the same between modules from different factories or different manufacturing dates.

My point is: get a kit that’s pre-tested.

Good RAM Brands are G.Skill, ADATA, Crucial and Corsair such as the Corsair 16GB Vengeance LPX Ram Kit or this 32GB Corsair RAM Kit.

Best Motherboard for 3D Modeling and Rendering

The Motherboard or Mainboard is the Hub that connects all of your hardware components together.

MSI MEG X570 Unify Hero

Image-Credit: MSI

It’s unlikely to impact performance all that much, but you should make sure it has all the features you need. Some important things to take note of are:

  • CPU Socket type: Different CPUs need different Sockets. Make sure your motherboard has the right socket for your CPU.
  • Memory Maximum: Some Motherboards/Chipsets can only support a certain amount of RAM and only have a certain number of RAM slots. Make sure it supports the amount of RAM you want.
  • Max # of GPUs: Motherboards support a certain number of GPUs and have a certain amount of PCIe slots and lanes that your GPU will use. Make sure you have enough for the number of GPUs you want.
  • Support for M.2 (NVME Drives): If you want an M.2 PCIe drive, make sure your motherboard supports this kind of drive (the motherboard’s manual is your friend).
  • Size of the Motherboard: Motherboards comes in different sizes. Make sure your motherboard fits inside your computer case (and vice versa too, of course).

I understand this might start to sound a bit complicated, and perhaps a bit too much to handle, particularly if you’re a first-time PC builder.

This is why I have built a few workstations for you, so you won’t have to figure out every detail on your own.

If you are leaning towards a 3rd gen Ryzen build, do check out this Article on what Motherboards are best for Ryzen 3000 Series CPUs.

Best Storage for 3D Modeling and Rendering

The speed of the storage is responsible for a few things:

  • Saving and loading your scene Files
  • Storing and loading your Textures, Assets, References
  • Swapping to disk if your RAM is full
  • Launching your Software

If you want to load your scenes quickly, you’ll need a fast disk.

A feature like autosave (which I highly recommend you always have ON) will save your scene faster if you have a fast disk. On the other hand, a blazingly fast disk won’t do much for your performance once your scene is loaded into RAM.

I recommend going for at least a SATA SSD such as the Samsung 860 EVO for your OS and your Scene Files.

Consider a PCI-E NVMe M.2 SSD such as the Samsung 970 EVO if you want even faster Performance and don’t mind spending the extra money. For Content-Creation workloads I highly recommend going the NVMe Route. Check out our NVMe Article to find out exactly which NVMe SSD is right for you.

samsung_970_evo

Fortunately, flash-based SSDs have become quite cheap recently and prices continue to drop.

Just have a look at the price decrease of the Samsung 860 EVO 1TB over the last years:

860 Evo Price History

Image-Credit: Geizhals.de

It usually is a good Idea to get a larger HDD to be able to periodically backup your Data in case your main Discs brake down out of unforeseeable reasons. As they tend to do in the middle of the most important Project.

With a larger Hard Drive you can have your inactive Projects Archived and only have your Active Projects on the fast Drives, saving space on your fast drives.

About PCI-E-Lanes

This section is a bit more advanced, but I get this question often enough that I want to explain it. Feel free to skip this part.

Here’s the Question: If the i7 8700K, i7 9700K, i9 9900K CPUs only offer 16 PCIe-Lanes, how can you use NVME SSDs (that already need 4 PCIe-lanes) or SATA Drives, if your GPU already uses up all of the 16 PCIe-Lanes to the CPU?

Answer: While the CPU-GPU PCIe-Lane interconnect is 16 PCIe Lanes wide, the Chipset itself can create 24 additional PCIe Lanes if required (on the Z370/Z390 Chipset).

The chipset lanes are connected to the CPU through a DMI link that’s only 4 PCIe lanes wide (which is roughly 4GB/s).

There could be a bottleneck in the unlikely scenario that you continuously copy huge amounts of data (like 50GB) from one of your NVMe SSDs to your second NVMe SSD and if your NVMe SSD can read and write faster than 2GB/s.

While that type of sequential read/write is possible (with the 970 EVO it is), it’s extremely rare that you’ll continuously be reading and writing sequentially for files that are of such size. If anything, you’ll be reading/writing randomly and on much smaller files.

Everything except for the RAM and the GPU is connected to those 24 chipset PCIe lanes, which are themselves connected to the CPU through the DMI link that’s 4 PCIe lanes wide. This includes LAN, USB, and everything else you plug into the motherboard.

amd x570 chipset features

Image-Credit: AMD

The PCIe lanes from the chipset to the CPU are not used from the moment you plug in a new component. Instead, think of these PCIe lanes like highway tunnels: they’re always there and let traffic through if it has to.

So you can attach up to 24 PCIe lanes worth of components to the chipset (SATA SSDs, HDDs, USBs, Ethernet cables, etc…) but they will only connect to the CPU and use Bandwidth when needed.

If you use all those components at maximum speed at the same time, then you would bottleneck. In such a scenario, you would need to turn towards the HEDT platform (such as the LGA 2066 or TR4) and not mainstream (1151, AM4).

Best Monitor for 3D Modeling and Rendering

It’s usually better to go for a monitor with an IPS panel instead of a TN panel. IPS display panels have better color and better contrast.

If you’ll spend many hours a day staring at your monitor, you’ll want a non-glare (matte) monitor. This will avoid hard reflections that could otherwise distract you.

You also want at least a Full HD 1920×1080 monitor that nicely fits the viewport and all your software. You might even want to consider higher-resolution monitors with a 2560×1440 or even a 4K (3840×2160) resolution, so you can fit more of your footage, references, and software windows.

This is particularly true if you’re working on 4K advertising and films, or on hi-res images.

Best Monitor for Graphic Design, Video Editing, 3D Animation: Dell

Image-Source: Dell

I’ve had great experiences working on Dell IPS monitors, such as the Dell UP2716d, but you might prefer a different brand.

How many Monitors do you use?

Check out this in-depth Guide to buying the best Monitors for visually demanding work, which has all the information you need for getting the best Monitor for your specific kind of work.

Best Power Supply (PSU) for 3D Modeling and Rendering

While an expensive PSU won’t increase your performance, it’s wise to get more than enough wattage.

Usually, you’ll want around 400-500 Watt for a regular build, with an additional 250W for every additional GPU.

Corsair AX760W PSU

Image-Credit: Corsair

Good PSU brands are Corsair, Seasonic, and beQuiet.

Here’s a PSU calculator that will tell you how many watts your PSU will need depending on the hardware you choose.

Another thing you should consider is to get a Modular PSU instead of a regular PSU. Modular PSU’s let you detach any cables you don’t need from it, which helps in freeing up the inside of the case and improves airflow.

Build your own Computer!

The best computer for 3D modeling and rendering is a computer that’s fast, makes you spend less time on it, avoids you wanting to punch through your monitor, and shouldn’t cost you an arm and a leg.

I get tremendous joy from building my own computers for 3D modeling, rendering, and many other use cases.

If you don’t build your own PCs yet, I’m sure you’ll learn to love it too.

Do you assemble your PC yourself or buy Pre-Built?

Building your own computer teaches you the inner working of the various hardware components while allowing you to gradually upgrade parts if so required and helping you find potential problems easier.

But the best part? It’s a lot cheaper than buying pre-configured computers, and it only takes an hour or two to assemble!

If you want to learn how to assemble a PC and how a computer actually works, I have an excellent book for you. It blew my mind a few years ago. You might’ve already read it, but for those of you who haven’t: prepare to be leveled up 🙂!

But How Do It Know – J. Clark Scott

I can’t stress it enough: assembling your own computer is not difficult. You more or less just plug different parts needed to build a PC into one another and tighten some screws. The hardest part seems to be adding a bit of thermal paste to the CPU. That’s it!

Here’s a nice tutorial video for you to follow along as you build:

Whew! That was quite a lot of theory. Let’s actually take a look at some functional PC builds.

Here are some Pre-Selected Builds in different Price Tiers:

Best full PC-Build Recommendations at different Price points

Best Computer for 3D Modeling and Rendering, AMD at roughly ~700$

Some Build notes:

This very low-budget Build can be made even cheaper if you use the CPU Cooler that comes with the CPU. It doesn’t have as great a Cooling Power as the CoolerMaster Hyper 212, but this is not entirely necessary with such a CPU.

Some CPU upgrades include the Ryzen 7 2700 or 2700X if you have some extra cash.

Best Computer for 3D Modeling and Rendering, AMD at roughly ~2000$

Some Build notes:

This is a basic AMD build that you can begin with. The Case is professional, minimalistic and quiet. There is room for 3 Optical drives in case you want to add some DVD/CD Drives.

The AMD Ryzen 9 3900X is the fastest of the third Generation Ryzen CPUs. It has excellent Multi-Core and great Single Core performance. Be sure to take a look at this article on the best motherboards for Ryzen 3rd Gen CPUs, to see which one exactly you will need.

I added a Samsung 970 EVO PLUS M.2 NVMe Drive in this build that will give you extreme Storage Performance. The Nvidia RTX 2070 will get you great performance at a good price.

Best Computer for 3D Modeling and Rendering, Intel at roughly ~2000$

Some Build notes:

Just like the AMD Build, this is a basic build that you can build upon. The Case is professional, minimalistic and quiet.

The Intel i7-10700K is an extremely high-clocking CPU in single-core performance, meaning your viewport and active-work speed will be very smooth.

If you are planning on some more extreme overclocking, you might want to consider a 360mm AiO CPU cooling solution.

Best Computer for CPU Rendering, AMD at roughly ~5000$

This is an excellent Build that leans towards CPU Rendering Performance and slightly less towards active-working performance in tasks such as 3D Modeling or Animating.


Some notes on this build:

As this build is focused on CPU Rendering, the other parts such as storage and GPU are proportionally low-end compared to the 64-Core Threadripper CPU. This build has an absolutely fantastic CPU Rendering Performance.

128GB of RAM is a lot. It should be more than enough for nearly all scenes. You can save some money by downgrading to 64GB or even 32GB though, if your scenes are rather simple.

Best Computer for GPU Rendering, AMD at roughly ~7100$

This is an excellent Build that will bring you the maximum plug & play GPU Rendering Performance (on a single Consumer Mainboard) combined with an excellent CPU for good Workstation performance. But it comes at a steep price.

Some notes on this Build:

4 GPUs need a Motherboard with 4 PCIE Slots that are spaced far enough from each other to allow for 4 dual-Slot GPUs. This is possible with the Gigabyte X399 Designare EX Motherboard.

At ~$1,200 each, RTX 2080TIs are expensive.  If you’re okay with slightly slower performance, but want to save a decent chunk of money, I recommend going with 4x RTX 2070, as these come in at around $550 each. You’ll only have 8GBs of VRAM per card, but the GPU rendering performance/price is much better.

The Case is big. It has room for 8 single-slot (or 4 dual slot) Cards. The Power Supply should provide at least 1250W and I added some headroom here with the excellent 1600W Corsair Titanium Power Supply.

Threadripper CPUs are excellent for multi-GPU setups, as these CPUs have 64 PCIE-Lanes to drive all of those GPUs in 16x and 8x Mode.

– All of these builds will of course need a Keyboard, Mouse, Monitor and Operating System to be complete, but I’ll let you figure those out on your own. –

Custom PC-Builder

If you want to get the best parts within your budget you should definitely have a look at the Web-Based PC-Builder Tool that I’ve created.

Select the main purpose that you’ll use the computer for and adjust your budget to create the perfect PC with part recommendations that will fit within your budget.

Be sure to check it out and please feel free to send feedback my way!

CGDirector PC-Builder Tool

CGDirector.com PC-Builder Title Image

If you are not quite sure yet what general kind of Computer, Desktop, Workstation or Laptop you need and you are still looking for some beginners help, check out this Article on finding exactly what kind of Computer you need.

Best Laptop for 3D Modeling and Rendering

Just a quick reminder for anyone who would like to get a Laptop instead of a Desktop PC or Workstation.

I have written an Article about what’s important in a Laptop for Animation or Laptops for Video Editing, if that’s a direction that interests you too. Go check it out!

A lot of the specs from 3D Animation will be exactly the same as for 3D Modeling. For CPU rendering, this article on the best CPU for rendering can help you out.

What kind of Computer or Workstation are you building?

Join the New CGDirector Forum! Expert Advice & PC-Build Planning with a warm and friendly Community! :)

Alex Glawion - post author

Hi, I’m Alex, a Freelance 3D Generalist, Motion Designer and Compositor.

I’ve built a multitude of Computers, Workstations and Renderfarms and love to optimize them as much as possible.

Feel free to comment and ask for suggestions on your PC-Build or 3D-related Problem, I’ll do my best to help out!

1164
Comments
Also check out our Forum for feedback from our Expert Community.

Nayda Venizelos

Hi,
God this is so hard, I’ve been trying to mix the best of the best. As many other people I work with Zbrush, Rhino, Keushot and 3D Scanning, so heavy meshes.

This is what I have in mind:

PCPartPicker Part List: https://uk.pcpartpicker.com/list/CKxbmg

CPU: AMD Ryzen 9 3950X 3.5 GHz 16-Core Processor (£664.97 @ CCL Computers)
CPU Cooler: NZXT Kraken X62 Rev 2 98.17 CFM Liquid CPU Cooler (£139.99 @ Amazon UK)
Motherboard: Gigabyte X570 AORUS MASTER ATX AM4 Motherboard (£355.43 @ More Computers)
Memory: Corsair Vengeance RGB Pro 64 GB (4 x 16 GB) DDR4-3200 CL16 Memory (£286.49 @ Amazon UK)
Storage: Western Digital SN750 1 TB M.2-2280 NVME Solid State Drive (£159.69 @ Amazon UK)
Storage: Western Digital SN750 1 TB M.2-2280 NVME Solid State Drive (£159.69 @ Amazon UK)
Storage: Toshiba X300 5 TB 3.5″ 7200RPM Internal Hard Drive (£148.23 @ Newegg UK)
Video Card: NVIDIA GeForce RTX 2070 8 GB Founders Edition Video Card
Case: NZXT H510 ATX Mid Tower Case (£72.45 @ CCL Computers)
Power Supply: EVGA SuperNOVA G3 850 W 80+ Gold Certified Fully Modular ATX Power Supply (£155.47 @ Scan.co.uk)
Operating System: Microsoft Windows 10 Pro OEM 64-bit
Case Fan: Noctua NF-F12 industrialPPC-2000 71.69 CFM 120 mm Fan (£25.98 @ CCL Computers)
Case Fan: Noctua NF-F12 industrialPPC-2000 71.69 CFM 120 mm Fan (£25.98 @ CCL Computers)
Case Fan: Noctua NF-F12 industrialPPC-2000 71.69 CFM 120 mm Fan (£25.98 @ CCL Computers)
Case Fan: Noctua NF-F12 industrialPPC-2000 71.69 CFM 120 mm Fan (£25.98 @ CCL Computers)
Case Fan: Noctua NF-F12 industrialPPC-2000 71.69 CFM 120 mm Fan (£25.98 @ CCL Computers)
Case Fan: Noctua NF-F12 industrialPPC-2000 71.69 CFM 120 mm Fan (£25.98 @ CCL Computers)

Marianna Lyubimova

Hi Alex!

Many thanks for your in-depth guide to PC-building. It explained a lot of stuff to me and it is conveniently placed in one article, I don’t have to hop back and forth between tabs to grasp the concept and it feels great!

I am just a beginner in the world of 3D and I am currently using Zbrush, Blender and Substance Painter. Also I am using Photoshop and Illustrator for 2D. Sometimes, I play video games and oh boy I can’t enjoy either of the things above since my rig is terribly outdated.
Currently I am running a 2012 build with:
CPU: Intel i7-3770k
GPU: Nvidia GTX 660Ti
12 GB RAM

I feel like I have to build a new pc from scratch and would like some advice to get a balanced build suited for both gaming and content creating. I wanted to pick up i5-9400f with RTX 2060s since I am on a tight budget ~1000$ for the whole build and never used anything but Intel and Nvidia products and want something that would last me for several years. Is the pair I mentioned a good match or there are better deals out there?

Cheers,
Marianna.

Portia Yoingco

Hi Alex!

This was very helpful for me, since I’m only starting to learn about PC builds. Thanks for taking the time to write this and adding your suggestions in the comments.

I will be a junior 3D generalist at an animation studio. My hobby is to do modelling, not so much animation. I also have a budget of max $1500 to spend since I will need some extra cash for a monitor. I’m mainly using Maya, Zbrush and Substance Painter. Do you have any recommendations for what build I should get?

Thanks so much!

Minnie

Hi Alex.

I want to follow your suggestion of AMD at roughly ~2000$.

Coud I use an iMac (21.5-inch, 2013) as a monitor ? What should I do ?

Thanks a lot.

Daniel

Hi Alex.
Im looking to update my PC because lately it has begun to freeze while working in 3dmax. I cant figure out if changing my graphics card is enough and then to what? or should i look at CPU change aswell.

My specs are:
Intel i7-6700K 4.01 GHz
Nvidia Geforce GTX 970
32 GB Ram
Windows 10

Im an architect, working in 3dmax with Corona render. Render time is ok but would but could be a bit faster. Main problem is 3dmax with some of my bigger projects.
I thought that working with 3d software Nvidia Quadro should be the way but im not seeing it in any of your recommendations, how come?

Hope you can lead my in the right direction.
Regards Daniel

Anurag Mishra

Hi Alex,
I am a freelance 3D generalist and mostly use VRay, Zbrush and Substance Painter. For that, I want to buy Ryzen 9 3900x with Nvidia RTX 2060 super(8GB), But the price of Ryzen 3900x is around 600 USD here in India, which is little higher than my budget. So I am considering Ryzen 7 3800x with Nvidia 2060 Super(8GB). Is Ryzen 7 3800x with Nvidia 2060 super enough for Vray and substance painter or I should go for Ryzen 3900x?
Also how much difference is there in the performance of 3000Hz and 3200Hz RAM?

Thanks.

Ayesha

Hi Alex!

First of all I’d like thank you for this in depth article and your dedicated responses to everybody’s questions. You’re god send!

So I’m a complete noob to 3D animation but long story short I’m looking at a portable workstation that can handle 3D, VR gaming, Video editing, photo editing( colour is important) and 2D animation. Essentially a creator laptop that can game.

My options are the Acer Concept d7,
The razor blade 15 and the Acer Concept D7 ezel or ezel pro. Are they worth the investment? I’m looking at spending money on something worthwhile for all my varying needs. The budget is less than $5000. I’m from India and we have to pay a lot of customs too so I’m really looking at the best option that I can import to the Netherlands and bring it from there.

Best,
Ayesha

Hey Ayesha,

Thanks for dropping a line!

The laptops you mentioned are all good options but if you want the best performance for the money, I suggest that you consider the XPC MSI GE66 Raider Gamer Notebook Essential priced at around $3,749.00. Below are the specs of the laptop:

CPU Intel Core i9-10980HK
Graphics Card NVIDIA GeForce RTX 2080 Super
Memory(RAM) 64GB DDR4-2666
SSD 2x2TB M.2 NVMe PCIe Solid State Drive
HDD –
Weight ~5.25pounds
Display 15.6″, 1920×1080

With that kind of firepower under the hood, the XPC MSI GE66 Raider Gamer Notebook Essential can definitely deliver an exceptional performance for your content creation needs and at the same time have the requisite components in order for you to have a highly enjoyable gaming ssession.

Cheers,
Alex

Ayesha

Great, will look into it! Otherwise I might just go for the ezel and save on having to buy a tablet…Thanks for taking the time to help out a stranger!

Heesu Hong

Hey, Alex. I’m a future architect student coming this year. I’m having really hard time to find a best laptop for my college. I think it’s better to keep a laptop for student and think to build my desktop later in the future. I have read many articles and watch YouTube about best laptop for either architects or student. But most of them are out of my budgets. Because most of them showed all the best specs they can add on. I know I will learn autoCad, Revit, BIM and others from my college. Most of time will be CAD. What would you recommend for best fit laptop for students maximum $1500.
Thanks alot.

Tuan Anh

Hi Alex
I am in Vietnam and working as an IT supporter in a company. Our designer would like to build a new desktop to run Rhino and Vray. They told me the size of Rhino file is about 2GB, and usually takes about over 2 days to completed that file. That designer is using a Dell workstation, CPU Xeon E-2146G 3.5GHz, Ram DDR4 2666MHz, graphic card Nvidia Quadro P2000. Now we would like to select another DELL Precision 7920 Tower XCTO Base but the price is much much higher our budget. Someone advises us a customize one with price only around $1,330, they are main asus Z10 PA-D8C, Ram 6x16GB (96GB), CPU E5-2678V3, graphic Geforce GTX1060-6GB. For my experience, they looks like a secondhand one.
I am really not a computer builder especially for this job. I need help to select a suitable one. Our budget is only $1,800 to $1,900 maximum.
Could you please advice me in this case?
Thanks a lot!!!

Sandeep singh

Hi alex
I build pc with your configration ryzen 9 3900x,
Its performance is very good . Its render speed highend. My old pc render time is 51 minutes and ryzen render time is just 38 second.i m very thankful to you Alex.
But one problem is that processer temperature reach 95 degree celcius while i render. I m also using corsier liquid coolr h60 . Is it normal. Plz rply me Thnks