Best Workstation Computer for 3D Modeling and Rendering

Best Workstation Computer for 3D Modeling and Rendering

CG Director Author Alex  by Alex   ⋮   ⋮   790 comments
CGDirector is Reader-supported. When you buy through our links, we may earn an affiliate commission.

The most interesting thing about looking for a Computer or Workstation for 3D Modeling and Rendering, is the fact that 3D Modeling and (CPU) Rendering are two very different use cases.

Both use the Hardware of a Computer in very different ways!

Before we dive into it, take a quick look at the Table of contents here, in case you prefer to skip the theory and want to know my recommendations immediately:

CPU Rendering

CPU Rendering uses all cores of your CPU 100% of the time while rendering.

This means, if you’ll use your Workstation just for 3D Rendering Images and Animations, or encoding Videos for that matter, you would be looking for a Computer with a CPU, that has as many cores as possible

Even if these cores are clocked relatively low.

This is because the render engine assigns a so-called “bucket” to each core in your CPU. Each individual core will render its bucket and then get a new bucket once it’s finished rendering the old one.

Perfect for Multi-Core CPUs.

CPU Rendering CPU Cores Buckets

3D Modeling

Contrary to rendering, 3D modeling is an active working process.

You (usually) sit in front of your computer and interact with the 3D Software.

Actively using a Software utilizes the Hardware it is running on in entirely different ways.

Take this example: I am modeling a car. That Car consists of Polygons that will have modifiers and Deformers applied to it, such as Mirroring, Cloning, Bending Objects and so on.

Your computer has to go through some serious calculations to process all this, but the key here is that these calculations are mainly done on only a SINGLE CPU Core.

Why? Because the Scene is built according to a certain hierarchy. A CPU has to work its way through this hierarchy step by step.

It can’t skip or off-load certain steps to other cores, because most of the steps depend on each other!

hierarhcyOrderOfExecution

What does this mean?

It means quite frankly that having lots of CPU-Cores will do nothing towards speeding up your modeling and does not usually make your Viewport faster.

Long explanation short:

For Modeling and actively working in your 3D Scene,  you would need to get a CPU that has the highest Clock Speed possible.

It doesn’t matter if it only has a few Cores, as most of these Cores won’t be used for modeling.

Take a look at this page to find the highest clocking CPUs currently available.

Same is also valid for working on Computer Animations or for running a CAD Workstation. A high-Clocking CPU will almost always outperform a high-Core-count CPU.

If you had to pick one: Which do you consider your main 3D Software?

The more Cores and the higher the clock speed, the better, right?

It’s now tempting to think you should get a CPU with lots of cores AND high clock speeds. After all, then we’ll have a workstation on which we can work fast AND which can render fast, right?

Unfortunately, because of power consumption and heat limits, there usually is a proportional trade-off between the number of CPU-cores and clock-speeds.

This means the more Cores the CPU has, the lower it will usually clock and vice versa.

The faster the Cores are clocked, the fewer cores there usually are on the CPU.

Many Cores need lots of Power and lots of Power produces lots of heat. CPUs have thermal regulations that need to be adhered to. The same applies to higher clocked cores that will be hotter than lower clocked cores.

This is quite a bummer, but it’s 2019 and the major CPU Manufacturers wouldn’t be all that major if they hadn’t found a way to improve upon this.

AMD and Intel have thought of a nice way of compensating for some of these trade-offs.

Enter Turbo-Boost.

Turbo-Boost (Turbo-Core)

Turbo-Boost is a feature that automatically overclocks Cores until thermal and power limits are reached. Depending on the Quality of cooling, duration can vary.

Say we are currently modeling and are only really using 1-2 Cores, the rest of the Cores are idle.

What Turbo boost does now is overclock these 1-2 Cores as far as specified by the manufacturer and as long as the Power Consumption and Temperature stays within the predefined limit.

As soon as these limits are reached, the Turbo-Boost will clock these two cores back down.

turboBoost

Image-Source: Intel

This way, to a certain degree, we can get CPUs with more Cores (and a low base-clock), that clock higher on limited cores, when needed and not all cores are being used.

CPU vs GPU Rendering

There are currently two popular methods of Rendering Images and Animations in 3D Software: CPU Rendering and GPU Rendering.

Are you mainly rendering on the GPU or CPU?

As you probably guessed, CPU Rendering utilizes the Processor for calculating the Image, and GPU Rendering utilizes the Graphics Card.

There are some differences in GPU and CPU rendering that you want to be aware of when choosing a new Computer or Workstation for 3D Rendering and Modeling:

First of all, almost every popular 3D Software comes with an inbuilt CPU Render Engine nowadays.

Only recently have GPU Render Engines such as Octane, Redshift,  V-RAY RT or FurryBall become mature enough to slowly but surely overtake CPU Render Engines in popularity.

In popularity, because GPU Render Engines are much faster in many cases and allow for extremely interactive preview Renderers.

This can improve and accelerate a 3D-Artists Workflow by a tenfold as you are able to iterate more often before finishing a project.

Furryball

Image-Source: furryball.aaa-studio.eu

Beginners are often told to start with 3D Rendering on the CPU and later switch to (often) costly 3rd Party GPU Render Engines when they have learned enough to properly utilize them.

I think this is about to change.

Just look at Blenders in-built Cycles GPU Render Engine and Cinema 4Ds new ProRender GPU Render Engine.  Both GPU render engines are built into the software itself and don’t rely on third-party plugins.

If you had to pick one: Which do you consider your main Render Engine?

Best individual Hardware Parts for 3D Modeling and Rendering explained

But enough talk! Let’s take a look at what specific Computer Parts you’ll need for the best Computer or Workstation for 3D Modeling and Rendering:

Best Processor (CPU) for 3D Modeling and Rendering

For Active Work: Intel i9 9900K

As explained above, you’ll have to make a decision depending on what you will use your computer most for.

Do you use it mainly to Model, Sculpt, Texture, Light, Animate and you spend much more time actively on it, than rendering on it?

Then you’ll want a CPU that is clocked as high as possible!

Good choices here are:

  • Intel i9 9900K, 8-Cores, Clocked at 3,6 GHz Base, 5 GHz TurboBoost
  • Intel i7 9700K, 8-Cores, Clocked at 3,6 GHz Base, 4,9 GHz TurboBoost (No Hyperthreading)
  • AMD Ryzen 9 3900X, 12-Cores, Clocked at 3,8 GHz Base, 4,6 GHz TurboBoost (Turbo Core)
  • AMD Ryzen 7 3700X, 8-Cores, Clocked at 3,6 GHz Base, 4,4 GHz TurboBoost (Turbo Core)
AMD Ryzen vs i7 8700K

Image-Source: AMD/Intel

A great benchmark for finding CPUs that are the snappiest is the Cinebench Single Core Benchmark.

Take a look at this page with Cinebench R20 Benchmarks and sort the Table on the “Cinebench Single” column to find the CPU that will give your workstation the best performance when you’re actively working on it.

What CPU Core-Feature is more valuable / important to you?

If you have the budget for an AMD Ryzen 9 3900X, this CPU is currently the best CPU for active Work such as Modeling and Animation. It also sports 12 Cores which gives you nice multi-core rendering performance.

Texturing 3D Models and painting or sculpting, too, need a high-clocking CPU. So if you consider yourself a Graphic Designer, the AMD Ryzen 9 3900X is an excellent choice.

For Render Work? AMD Threadripper CPUs such as the Threadripper 2950X!

Do you use this Workstation less for active work and more to Render out your Projects? Do you spend more time on Rendering than on actually sitting in front of it?

You should consider going into a high core-count direction which are the best CPUs for Rendering (Or if you want a second Computer just for Rendering on).

Good choices here are:

  • AMD Threadripper 2920X, 2950X, 2970WX, 2990WX – 12-32 Cores – Highly Recommended!
  • Intel i9 9900X, 9920X, 9960X, 9980XE – 10-18 Cores (quite expensive)

If you want to use VRAY, as it is one of the most popular Render Engines available, have a look at the following page to get an overview of the VRAY CPU Benchmarks Results.

AMD Ryzen Threadripper 3D Rendering

Image-Source: overclock.net

Which CPU are you planning on Buying?

Best Graphics Card (GPU) for 3D Modeling and Rendering

Best GPU for GPU Rendering: GPU Rendering is becoming more popular as we speak and is likely to overtake CPU Rendering in the near future.

Some of the most popular modern GPU Render Engines are Octane, Redshift, VRAY-RT, and Cycles. The first two only support NVIDIA GPUs, while the latter also support AMD (OpenCL) GPUs.

Personally, I prefer recommending GPUs that work with any of the above Render Engines (CUDA Support), so here are a few NVIDIA GPUs in order of Performance that will give you excellent GPU Rendering Speed:

The Nvidia Graphics Card List could go on, but I think you get the gist.

The higher the number, the faster and the more expensive they get.

Nvidia GPUs 3D Modeling and Rendering

Image-Source: gamespot.com

Here is a GPU Render Benchmark overview if you’d like to compare the cost to performance in a bit more detail.

Other great GPU Benchmarks to take a look at are the VRAY-RT, Octane, and Redshift benchmarks.

Best GPU for Viewport performance

As the Processor is usually the bottleneck in having a snappy Viewport, Graphics Cards shouldn’t usually make a noticeable difference, if you buy good enough.

All the GPUs listed above will perform roughly the same in Viewport performance.

This is because there are rarely features in 3D Applications, that the GPU computes slower than it takes the CPU to update Meshes, Deformers and the like.

In other words: The GPU usually has to wait for the CPU to finish its tasks to continue working.

This being said, if you rely heavily on In-Viewport SSAO, Reflections, AO, Anti-Aliasing and the like, you might want to lean towards the top of the above GPU list for a snappy Viewport.

But for most, a high clocked-CPU will make a much larger difference.

Let’s pick the Nvidia RTX 2070 for our Best Computer for 3D Modeling and Rendering, as it has excellent GPU-Render value and is fast enough for any kind of Viewport challenges.

A quick heads-up:

In rare cases if you only use a few extremely high-poly RAW meshes (such as a CAD-Converted Car with 40 Million Polygons) and you don’t have any modifiers on this mesh, then the GPU will probably be the bottleneck as your workstation only has to update the viewing angle of the Car and not the meshes underlying structure.

How much and what Type of RAM (Memory) do you need for 3D Modeling and Rendering?

Similar to the CPU, the amount and type of memory (RAM) you’ll need will depend on your use case.

If you work on models with extremely high polygon counts, you will want more RAM than if you usually only do lightweight 3D work with simpler scenes.

I recommend 32GB of RAM for most 3D Artists.

If you sculpt or work on high-poly meshes, use lots of large textures or have complex scenes with thousands of objects in them, you might want to go with 64GB of RAM.

16 GB of RAM can be enough for many starting out with 3D, but usually, you outgrow this quite quickly.

Corsair RAM for Computer for 3D Modeling and Rendering

Image-Source: gskill

RAM speeds & timing can normally be ignored, as these don’t make much of a difference performance-wise.

Getting DDR4-4166 RAM won’t be noticeably faster than DDR4-2666 RAM.

That said, AMD Threadripper does benefit more from higher clocked RAM than Intel CPUs do. This is due to the fact, that some components on Threadripper CPUs are linked to the Memory Clock speed.

So having Quad Channel Memory that is clocked at 2933Mhz might give you a few percents more performance on Threadripper CPUs.

If you do like to optimize your hardware as much as possible, the rule is usually:

The lower the CL and higher the Clock Speed, the better. So a DDR4-3200 CL15 would be slightly faster than a DDR4-2800 CL16 for example.

The new 3rd gen AMD Ryzen CPUs too, benefit from higher clocked RAM.

A note on RAM Kits

When buying RAM, buy the full amount in a single RAM kit. RAM Kits (which are RAM Modules packaged together) are pre-tested in the Factory and will work well together.

Although people often say you can buy some RAM now and add some more laterRAM modules sometimes don’t work well together.

So if you are getting entirely new RAM for your PC, be sure to get (for example) 4x8GB in a KIT and not 2x8GB + 2x8GB in two separate KITs.

Why should RAM in different KITs be different from each other?

The reason why RAM in different kits differ from each other is because they can be manufactured in different factories and different factory lines that use slightly different silicon, or because one RAM module might have been manufactured in 2017, while the other module was manufactured in 2019. You don’t know for sure that the timing on the RAM will be exactly the same between modules from different factories or different manufacturing dates.

My point is: get a kit that’s pre-tested.

Good RAM Brands are G.Skill, ADATA, Crucial and Corsair such as the Corsair 16GB Vengeance LPX Ram Kit or this 32GB Corsair RAM Kit.

Best Motherboard for 3D Modeling and Rendering

The Motherboard or Mainboard is the Hub that connects all of your hardware components together.

It’s unlikely to impact performance all that much, but you should make sure it has all the features you need. Some important things to take note of are:

  • CPU Socket type: Different CPUs need different Sockets. Make sure your motherboard has the right socket for your CPU.
  • Memory Maximum: Some Motherboards/Chipsets can only support a certain amount of RAM and only have a certain number of RAM slots. Make sure it supports the amount of RAM you want.
  • Max # of GPUs: Motherboards support a certain number of GPUs and have a certain amount of PCIe slots and lanes that your GPU will use. Make sure you have enough for the number of GPUs you want.
  • Support for M.2 (NVME Drives): If you want an M.2 PCIe drive, make sure your motherboard supports this kind of drive (the motherboard’s manual is your friend).
  • Size of the Motherboard: Motherboards comes in different sizes. Make sure your motherboard fits inside your computer case (and vice versa too, of course).

I understand this might start to sound a bit complicated, and perhaps a bit too much to handle, particularly if you’re a first-time PC builder.

This is why I have built a few workstations for you, so you won’t have to figure out every detail on your own.

If you are leaning towards a 3rd gen Ryzen build, do check out this Article on what Motherboards are best for Ryzen 3000 Series CPUs.

Best Storage for 3D Modeling and Rendering

The speed of the storage is responsible for a few things:

  • Saving and loading your scene Files
  • Storing and loading your Textures, Assets, References
  • Swapping to disk if your RAM is full
  • Launching your Software

If you want to load your scenes quickly, you’ll need a fast disk.

A feature like autosave (which I highly recommend you always have ON) will save your scene faster if you have a fast disk. On the other hand, a blazingly fast disk won’t do much for your performance once your scene is loaded into RAM.

I recommend going for at least a SATA SSD such as the Samsung 860 EVO for your OS and your Scene Files.

Consider a PCI-E M.2 SSD such as the Samsung 970 EVO if you want even faster Performance and don’t mind spending the extra money.

samsung_970_evo

Fortunately, flash-based SSDs have become quite cheap recently and prices continue to drop.

Just have a look at the price decrease of the Samsung 860 EVO 1TB over the last six months:

Samsung 860 EVO Price Drop

Image-Source: geizhals.de

It usually is a good Idea to get a larger HDD to be able to periodically backup your Data in case your main Discs brake down out of unforeseeable reasons. As they tend to do in the middle of the most important Project.

About PCI-E-Lanes

This section is a bit more advanced, but I get this question often enough that I want to explain it. Feel free to skip this part.

Here’s the Question: If the i7 8700K, i7 9700K, i9 9900K CPUs only offer 16 PCIe-Lanes, how can you use NVME SSDs (that already need 4 PCIe-lanes) or SATA Drives, if your GPU already uses up all of the 16 PCIe-Lanes to the CPU?

Answer: While the CPU-GPU PCIe-Lane interconnect is 16 PCIe Lanes wide, the Chipset itself can create 24 additional PCIe Lanes if required (on the Z370/Z390 Chipset).

The chipset lanes are connected to the CPU through a DMI link that’s only 4 PCIe lanes wide (which is roughly 4GB/s).

There could be a bottleneck in the unlikely scenario that you continuously copy huge amounts of data (like 50GB) from one of your NVMe SSDs to your second NVMe SSD and if your NVMe SSD can read and write faster than 2GB/s.

While that type of sequential read/write is possible (with the 970 EVO it is), it’s extremely rare that you’ll continuously be reading and writing sequentially for files that are of such size. If anything, you’ll be reading/writing randomly and on much smaller files.

Everything except for the RAM and the GPU is connected to those 24 chipset PCIe lanes, which are themselves connected to the CPU through the DMI link that’s 4 PCIe lanes wide. This includes LAN, USB, and everything else you plug into the motherboard.

The PCIe lanes from the chipset to the CPU are not used from the moment you plug in a new component. Instead, think of these PCIe lanes like highway tunnels: they’re always there and let traffic through if it has to.

So you can attach up to 24 PCIe lanes worth of components to the chipset (SATA SSDs, HDDs, USBs, Ethernet cables, etc…) but they will only connect to the CPU and use Bandwidth when needed.

If you use all those components at maximum speed at the same time, then you would bottleneck. In such a scenario, you would need to turn towards the HEDT platform (such as the LGA 2066 or TR4) and not mainstream (1151, AM4).

Best Monitor for 3D Modeling and Rendering

It’s usually better to go for a monitor with an IPS panel instead of a TN panel. IPS display panels have better color and better contrast.

If you’ll spend many hours a day staring at your monitor, you’ll want a non-glare (matte) monitor. This will avoid hard reflections that could otherwise distract you.

You also want at least a Full HD 1920×1080 monitor that nicely fits the viewport and all your software. You might even want to consider higher-resolution monitors with a 2560×1440 or even a 4K (3840×2160) resolution, so you can fit more of your footage, references, and software windows.

This is particularly true if you’re working on 4K advertising and films, or on hi-res images.

I’ve had great experiences working on the Asus IPS monitors, such as the Asus ProArt PA329Q, but you might prefer a different brand.

How many Monitors do you use?

Check out this in-depth Guide to buying the best Monitors for visually demanding work, which has all the information you need for getting the best Monitor for your specific kind of work.

Best Power Supply (PSU) for 3D Modeling and Rendering

While an expensive PSU won’t increase your performance, it’s wise to get more than enough wattage.

Usually, you’ll want around 400-500 Watt for a regular build, with an additional 250W for every additional GPU.

Good PSU brands are Corsair, Seasonic, and beQuiet.

Here’s a PSU calculator that will tell you how many watts your PSU will need depending on the hardware you choose.

Build your own Computer!

The best computer for 3D modeling and rendering is a computer that’s fast, makes you spend less time on it, avoids you wanting to punch through your monitor, and shouldn’t cost you an arm and a leg.

I get tremendous joy from building my own computers for 3D modeling, rendering, and many other use cases.

If you don’t build your own PCs yet, I’m sure you’ll learn to love it too.

Do you assemble your PC yourself or buy Pre-Built?

Building your own computer teaches you the inner working of the various hardware components while allowing you to gradually upgrade parts if so required and helping you find potential problems easier.

But the best part? It’s a lot cheaper than buying pre-configured computers, and it only takes an hour or two to assemble!

If you want to learn how to assemble a PC and how a computer actually works, I have an excellent book for you. It blew my mind a few years ago. You might’ve already read it, but for those of you who haven’t: prepare to be leveled up 🙂!

But How Do It Know – J. Clark Scott

I can’t stress it enough: assembling your own computer is not difficult. You more or less just plug different parts needed to build a PC into one another and tighten some screws. The hardest part seems to be adding a bit of thermal paste to the CPU. That’s it!

Here’s a nice tutorial video for you to follow along as you build:

Whew! That was quite a lot of theory. Let’s actually take a look at some functional PC builds.

Here are some Pre-Selected Builds in different Price Tiers:

Best full PC-Build Recommendations at different Price points

Best Computer for 3D Modeling and Rendering, AMD at roughly ~700$

Some Build notes:

This very low-budget Build can be made even cheaper if you use the CPU Cooler that comes with the CPU. It doesn’t have as great a Cooling Power as the CoolerMaster Hyper 212, but this is not entirely necessary with such a CPU.

Some CPU upgrades include the Ryzen 7 2700 or 2700X if you have some extra cash.

Best Computer for 3D Modeling and Rendering, AMD at roughly ~2000$

Some Build notes:

This is a basic AMD build that you can begin with. The Case is professional, minimalistic and quiet. There is room for 3 Optical drives in case you want to add some DVD/CD Drives.

The AMD Ryzen 9 3900X is the fastest of the third Generation Ryzen CPUs. It has excellent Multi-Core and great Single Core performance. Be sure to take a look at this article on the best motherboards for Ryzen 3rd Gen CPUs, to see which one exactly you will need.

I added a Samsung 970 EVO PLUS M.2 NVMe Drive in this build that will give you extreme Storage Performance. The Nvidia RTX 2070 will get you great performance at a good price.

Best Computer for 3D Modeling and Rendering, Intel at roughly ~2000$

Some Build notes:

Just like the AMD Build, this is a basic build that you can build upon. The Case is professional, minimalistic and quiet.

The Intel i9-9900K is the currently leading CPU in single-core performance, meaning your viewport and active-work speed will not get any faster than with this CPU.

If you are planning on some more extreme overclocking, you might want to consider an AiO CPU cooling solution.

Best Computer for CPU Rendering, AMD at roughly ~3000$

This is an excellent Build that leans towards CPU Rendering Performance and slightly less towards active-working performance in tasks such as 3D Modeling or Animating.


Some notes on this build:

As this build is focused on CPU Rendering, the other parts such as storage and GPU are proportionally low-end compared to the 32-Core Threadripper CPU. This build has an absolutely fantastic CPU Rendering Performance.

64GB of RAM is a lot. It should be more than enough for nearly all scenes. You can save some cash by downgrading to 32GB though.

Best Computer for GPU Rendering, AMD at roughly ~7100$

This is an excellent Build that will bring you the maximum plug & play GPU Rendering Performance (on a single Consumer Mainboard) combined with an excellent CPU for good Workstation performance. But it comes at a steep price.

Some notes on this Build:

4 GPUs need a Motherboard with 4 PCIE Slots that are spaced far enough from each other to allow for 4 dual-Slot GPUs. This is possible with the Gigabyte X399 Designare EX Motherboard.

At ~$1,200 each, RTX 2080TIs are expensive.  If you’re okay with slightly slower performance, but want to save a decent chunk of money, I recommend going with 4x RTX 2070, as these come in at around $550 each. You’ll only have 8GBs of VRAM per card, but the GPU rendering performance/price is much better.

The Case is big. It has room for 8 single-slot (or 4 dual slot) Cards. The Power Supply should provide at least 1250W and I added some headroom here with the excellent 1600W Corsair Titanium Power Supply.

Threadripper CPUs are excellent for multi-GPU setups, as these CPUs have 64 PCIE-Lanes to drive all of those GPUs in 16x and 8x Mode.

– All of these builds will of course need a Keyboard, Mouse, Monitor and Operating System to be complete, but I’ll let you figure those out on your own. –

Custom PC-Builder

If you want to get the best parts within your budget you should definitely have a look at the Web-Based PC-Builder Tool that I’ve created.

Select the main purpose that you’ll use the computer for and adjust your budget to create the perfect PC with part recommendations that will fit within your budget.

Be sure to check it out and please feel free to send feedback my way!

CGDirector PC-Builder Tool

CGDirector.com PC-Builder Title Image

If you are not quite sure yet what general kind of Computer, Desktop, Workstation or Laptop you need and you are still looking for some beginners help, check out this Article on finding exactly what kind of Computer you need.

Best Laptop for 3D Modeling and Rendering

Just a quick reminder for anyone who would like to get a Laptop instead of a Desktop PC or Workstation.

I have written an Article about what’s important in a Laptop for Animation or Laptops for Video Editing, if that’s a direction that interests you too. Go check it out!

A lot of the specs from 3D Animation will be exactly the same as for 3D Modeling. For CPU rendering, this article on the best CPU for rendering can help you out.

What kind of Computer or Workstation are you building?

Alex from CGDirector - post author

Hi, I'm Alex, a Freelance 3D Generalist, Motion Designer and Compositor.

I've built a multitude of Computers, Workstations and Renderfarms and love to optimize them as much as possible.

Feel free to comment and ask for suggestions on your PC-Build or 3D-related Problem, I'll do my best to help out!

790
Comments

Andy

Thanks for the great article.
I’m upgrading soon. Need to stay MacOS though. I would say that I am more focused towards active 3D use (Model, Sculpt, Texture, Light, Animate) – what do you think of the processors available in the current Mac world:

iMac 27″ (Retine 5K)
3.0GHz 6-core Intel Core i5
3.1GHz 6-core Intel Core i5
3.7GHz 6-core Intel Core i5
3.6GHz 8-core Intel Core i9
TB 5.0GHz

iMac Pro
3.2GHz 8-core Intel Xeon W
3.0GHz 10-core Intel Xeon W
2.5GHz 14-core Intel Xeon W
2.3GHz 18-core Intel Xeon W
TB 4.5GHz

Mac Pro (new)
3.5GHz 8-core Intel Xeon W
3.3GHz 12-core Intel Xeon W
3.2GHz 16-core Intel Xeon W
2.7GHz 24-core Intel Xeon W
2.5GHz 28-core Intel Xeon W
TB 4.4GHz

Willing to spend ‘smart’ money.. but the processing speeds are disappointing – especially for the iMac Pro. I thought that would be the one. Are these setups designed more for video and music?
https://www.apple.com/ca/mac/compare/?modelList=MacPro-2019,iMacPro,iMac-5K

Maulen

Hello! I read your site I was interested, in a month I plan to buy the assembly only the processor, RAM, motherboard. I have a graphics card GTX 1070 Ti and a power supply 700W.
I am engaged in 3D visualization, texture artist, LookDev rendering, simulation in Houdini.
I will choose to buy an AMD Ryzen 2700X processor, 64GB RAM 3200MHZ, motherboard GIGABYTE B450 AORUS M – will it work?

isaac

hi alex, ive read a lot of articles + some forums discussions and ive been in and out of your website a couple of times and finally ive made up with 2 shortlisted GPU im going for, and of course i would like you to help me see whats best for my interest.

ill be using it for AutoCAD, 3DS max(for designing mainly interior views & rendering them), sketchup, adobe photoshop and adobe illustrator.

now the question is, quadro p2200 vs geforce rtx2070. many said that based on the things i want to do requires a professional card, not a gaming card. taking into consideration that this computer will not really be used for gaming HOWEVER, some tests have proven that the higher fps that geforce is providing compared to the stability that quadro is providing is much more beneficial in my field of usage. can i also ask you for a recommended build? because the current one i have on mind is this:

chassis: cooler master
psu: gold rated 650-750w
cpu: intel i7
gpu: quadro p2200
motherboard: asus prime
ram: g skills ddr4 16gb

or should i go towards gaming cards and parts? im a noob in technology stuff.

thanks alex!

Chris

Hi, Alex

I was noticing that the only builds with multiple GPUs use the RTX 2080 Ti. Is this because the 2080s are the only GPUs able to utilize NVlink? Or do multiple 2070s in a build still improve rendering performance, even without NVlink capability?

Thanks!

Chris

Or is the NVlink just for gaming purposes and doesn’t relate to rendering?

robertoortiz

I know that we are not exactly trending, But Lightwave is still being developed and it still has an active user base. Just an FYI

Setha

Can anybody help me!
I am an the architecture student.
I want a smooth use on Sketchup and Autocad.
I use a little bit plugin, 3d model, Rander
Budget 1500$
What do you choose between Acer helios 300 and MSI prestige 15 ?

Hi Setha,

Thanks for asking!

Both the Acer Helios 300 and MSI Prestige 15 are good laptops but if you have a budget of $1,500, I suggest that you take a look at the Asus ROG Strix G Gaming Laptop. Below are its specs:

CPU Intel Core i7-9750H 2.60GHz 6-Core Processor
Graphics Card NVIDIA GeForce RTX 2060 6GB
Memory(RAM) 16GB DDR4-2666
SSD 512GB PCIe Solid State Drive
HDD –
Weight 2.3 kg (~5.06pounds)
Display 15.6″, 1920×1080

The Asus ROG Strix G Gaming Laptop is currently available at around $1,520.09 which is a little over your budget but with this laptop, you get a snappy i7-9750H CPU with 16GB of RAM working together to ensure that you get task responsiveness when you’re actively working inside the software.

Though the Asus ROG Strix G Gaming Laptop is a bit more expensive than the Acer Helios 300 ($995.00) and the MSI Prestige 15 ($1,399.00), it does come with a more powerful RTX 2060 GPU compared to the GTX 1650 Max-Q of the Prestige 15 and GTX 1060 of the Helios 300. In addition to that, the RTX 2060 GPU of the Asus ROG Strix G supports CUDA core acceleration and this delivers a better render performance if you plan on using the GPU render engines. All in all, you can’t go wrong with the Asus ROG Strix G Gaming Laptop!

If you are open to looking at other options, please go ahead and check the site’s PC Builder Tool at https://www.cgdirector.com/pc-builder/ so you can get the best recommendations based on your budget and use case.

Cheers,
Alex

Freja

will the $700 build be able to run the latest editions of Maya, Zbrush Blender autocad, 3ds max, keyshot, Photoshop, marvelous designer?i’m a long time tech, but really only in individual parts, when you put them all together in a build it’s greek. I’m currently running on a 2013 8.1 all in one piece of grabage and i cant even run the last years editions of my programs. I’m more familiar with the intel CPU’s , not that I have a preference it’s just what was available in my hometown) i’m getting more brave in the build my own way since I upgraded my son’s gaming p.c. and I really need a system that will last and I can upgrade parts if needed. No more of this all in one stuff and as much as I love the portability of laptops upgrades are a pain.
I fervently thank you for your help. maybe if I can sell my old workstations I can pull together the cash to do this before they stop supporting 8.1 in february.

Again thank you

Ruwaifa khan

Hi Alex,

First of all its a wonderful site with lots of detail thanks for providing such minute details.

I worked as a designer using 3ds max & Vray with other 2d software like Illustrator, photoshop & few editing software ( Aftereffect & premier )

I mostly worked on 3ds max & Vray

I like the given Configuration by you please find below

CPU: AMD Ryzen 9 3900X 3.8GHz 12-Core Processor
CPU Cooler: be quiet! Dark Rock Pro 4 AM4
Motherboard: Gigabyte X570 Aorus Elite ATX AM4
GPU: NVIDIA RTX 2070 8GB – MSI Gaming
Memory: 32GB (2 x 16GB) Corsair Vengeance LPX DDR4-3200 CL16
Storage PCIe-SSD: Samsung 970 EVO PLUS 1TB M.2 Solid State Drive
Power Supply: Corsair RMx Series RM650x 650W ATX 2.4 Power Supply
Case: Phanteks Enthoo Pro ATX Full Tower Case

My question is I’m looking for high GPU for rendering machine so should I go with given Graphic card or look for others like Nvidia Quadro p2000 or can you suggest

How we can calculate Clock speed the graphic card that you have suggested comes with 1830Mhz

The budget was given by you was good for me can you suggest other configuration too.

Thanks

Hi Ruwaifa,

Thank you for dropping a line and thank you for the kind words!

If you want a higher-tiered GPU, I suggest that you go for an RTX 2080 or RTX 2080 Ti. I don’t usually recommend using NVIDIA Quadro GPUs because they tend to cost more for the performance they bring to the table so if you have the means, a higher-tiered RTX GPU is the best way to go. You don’t need to calculate the clock speed of a graphics card by the way. You only need to look for the specifications of a certain graphics card in order to find all pertinent information such as clock speed, CUDA cores (for NVIDIA GPUs), and the like.
You can find the actual speed of different gpus in benchmark lists such as this octanebenchlist https://www.cgdirector.com/octanebench-benchmark-results/ or redshift gpu render engine benchmark results: https://www.cgdirector.com/redshift-benchmark-results/

If you’re going to use the build for both 3D modeling and rendering, that build is as good as it can get. It’s very balanced with its Ryzen 9 3900X CPU having a high clock speed for task responsiveness and a high core count for rendering tasks. It also comes with an RTX 2070 GPU which at the moment boasts of the best price to performance ratio among GPUs and also packs support for CUDA core acceleration for better render performance in case you need to use the GPU render engines.

Also, you might want to have a look at the site’s PC Builder Tool. It’s a web-based tool that gives you the best recommendations based on your budget and use case. You can find the tool here: https://www.cgdirector.com/pc-builder/

Cheers,
Alex

Ryan

if i have a budget of around 2,5-3K, what’s the best laptop i can get if i want to focus on 3D modeling?

Hi Ryan,

Thanks for asking!

With your budget, your best option is the Gigabyte AERO 15-X9-9RT5. The specs of the laptop are below:

CPU Intel Core i9-8950HK 2.90GHz 6-Core Processor
Graphics Card NVIDIA GeForce RTX 2070 8GB
Memory(RAM) 16GB DDR4-2666
SSD 1TB M.2 NVMe PCIe Solid State Drive
HDD –
Weight 2.1 kg (~4.62pounds)
Display 15.6″, 1920×1080

The Gigabyte AERO 15-X9-9RT5 is priced at around $2,199.00 and it comes with a snappy i9-8950HK CPU that will guarantee task responsiveness when you’re working actively inside the software. The laptop also features an RTX 2070 GPU which brings the best price to performance ratio among GPUs at the moment and at the same time packs support for CUDA core acceleration which will deliver better render performance in case you plan on using the GPU render engines.

For other options, please check out the site’s PC Builder Tool at https://www.cgdirector.com/pc-builder/. It’s a web-based tool that gives you the best recommendations based on your budget and use case scenario.

Cheers,
Alex

Ryan

thanks, alex
would it be better if i get a desktop instead?
what parts do you recmmend wth the same budget?

Hi Ryan,

The decision to go for a desktop or a laptop is purely based on preference. If you get a desktop, you have the option of upgrading some or all parts at any given time. A laptop on the other hand is preferable if you want something for on-the-go usage. Whether you get a desktop or a laptop, as long as the parts you select are more up to the task of what you need it for, you should be good.

For a budget of around $2,500, you can get a build like the one I put together for you:

CPU: Intel i9 9900k 3.6GHz 8-Core Processor ($471.99)
CPU Cooler: be quiet! Dark Rock Pro 4 1151 ($89.90)
Motherboard: ASUS Prime Z390-A ATX 1151 ($177.99)
GPU: NVIDIA RTX 2080 SUPER 8GB – MSI Gaming X Trio ($759.99)
Memory: 64GB (4 x 16GB) Corsair Vengeance LPX DDR4-3200 CL16 ($319.99)
Storage PCIe-SSD: Samsung 970 EVO PLUS 1TB M.2 Solid State Drive ($199.99)
Power Supply: Corsair RM Series RM750 750W Power Supply ($119.99)
Case: Corsair Carbide Series 275Q ATX Mid Tower Case ($81.97)

The total of the build comes up to around $2221.81 which is slightly more expensive than the Gigabyte AERO 15-X9-9RT5 laptop I recommended above but with this build, you get better and more powerful components for just a little more. The remaining money from your budget can then be used for additional storage or a nice monitor (if you don’t have one just yet).

Cheers,
Alex

Dave

Hi Alex, You convinced me to build one of these bad boys and my budget is pretty high (just not 7100), actually with monitor I’d like to keep it around 5,000. That being said, will this build work. I basically took your 2000.00 Intel build and juice it up in Ram and GPU, plus when for 850 watts instead of the lower one since adding the additional GPU. Here it is and thanks for all your help!
Corsair Carbide 275R Mid Tower Gaming Case, tempered glass-black
Seasonic FOCUS Plus 850 Gold SSR-850FX 850 watt 80+Gold ATX12V and EPS12V Full etc power supply
2ea Samsung 970 EVO Plus Series 500GB PCIe NVMe M.2 Internal SSD
Corsair Dominator Platinum 64 GB (4x16gb) DDR4 3200MHz C16 Desktop Memory
2ea MSI Gaming GeForce RTX 2070 8GB 256-bit/DP/USB etc graphics card
ASUS Prime Z390-A Mother board LGA1151
be quiet Dark Rock Pro 4 BK022 250w CPU Cooler
Intel Core i9-9900 Desktop Processor 8 Cores 5.0 GHz Turbo Unlocked LGA1151 300 Series 95W
and lastly the Dell UP2716D 27″ Screen LED-Lit Monitor you highly recommend.
Note:I will also be adding an additional monitor of a lower grade.

I’ll be using it for modeling and rendering in Blender 2.8, no gaming at this time. I know the ram is hight but I’d rather juice this thing up now while I can rather than wait….seems like everything takes more space with each passing day!