Best Workstation Computer for 3D Modeling and Rendering

CG Director Author Alex Glawion  by Alex Glawion   ⋮   ⋮   1,080 comments
CGDirector is Reader-supported. When you buy through our links, we may earn an affiliate commission.
Best Workstation Computer for 3D Modeling and Rendering

The most interesting thing about looking for a Computer or Workstation for 3D Modeling and Rendering, is the fact that 3D Modeling and (CPU) Rendering are two very different use cases.

Both use the Hardware of a Computer in very different ways!

Before we dive into it, take a quick look at the Table of contents here, in case you prefer to skip the theory and want to know my recommendations immediately:

CPU Rendering

CPU Rendering uses all cores of your CPU, 100% of the time while rendering.

This means, if you’ll use your Workstation just for 3D Rendering Images and Animations, or encoding Videos for that matter, you would be looking for a Computer with a CPU, that has as many cores as possible

Even if these cores are clocked relatively low.

This is because the render engine assigns a so-called “bucket” to each core in your CPU. Each individual core will render its bucket and then get a new bucket once it’s finished rendering the old one.

Perfect for Multi-Core CPUs.

CPU Rendering CPU Cores Buckets

3D Modeling

Contrary to rendering, 3D modeling is an active working process.

You (usually) sit in front of your computer and interact with the 3D Software.

Actively using a Software utilizes the Hardware it is running on in entirely different ways.

Take this example: I am modeling a car. That Car consists of Polygons that will have modifiers and Deformers applied to it, such as Mirroring, Cloning, Bending Objects and so on.

Your computer has to go through some serious calculations to process all this, but the key here is that these calculations are mainly done on only a SINGLE CPU Core.

Why? Because the Scene is built according to a certain hierarchy. A CPU has to work its way through this hierarchy step by step.

It can’t skip or off-load certain steps to other cores, because most of the steps depend on each other!


What does this mean?

It means quite frankly that having lots of CPU-Cores will do nothing towards speeding up your modeling and does not usually make your Viewport faster.

Long explanation short:

For Modeling and actively working in your 3D Scene,  you would need to get a CPU that has the highest Clock Speed possible.

It doesn’t matter if it only has a few Cores, as most of these Cores won’t be used for modeling.

Take a look at this page to find the highest clocking CPUs currently available.

Same is also valid for working on Computer Animations or for running a CAD Workstation. A high-Clocking CPU will almost always outperform a high-Core-count CPU.

If you had to pick one: Which do you consider your main 3D Software?
  • Blender 29%, 2085 votes
    2085 votes 29%
    2085 votes - 29% of all votes
  • 3ds Max 23%, 1605 votes
    1605 votes 23%
    1605 votes - 23% of all votes
  • Maya 15%, 1094 votes
    1094 votes 15%
    1094 votes - 15% of all votes
  • Cinema 4D 13%, 911 votes
    911 votes 13%
    911 votes - 13% of all votes
  • Revit 6%, 451 vote
    451 vote 6%
    451 vote - 6% of all votes
  • Zbrush 5%, 364 votes
    364 votes 5%
    364 votes - 5% of all votes
  • Other 4%, 292 votes
    292 votes 4%
    292 votes - 4% of all votes
  • Houdini 3%, 188 votes
    188 votes 3%
    188 votes - 3% of all votes
  • Modo 1%, 63 votes
    63 votes 1%
    63 votes - 1% of all votes
  • Artlantis 0%, 24 votes
    24 votes
    24 votes - 0% of all votes
  • Katana 0%, 14 votes
    14 votes
    14 votes - 0% of all votes
Total Votes: 7091
10. Apr, 2019

The more Cores and the higher the clock speed, the better, right?

It’s now tempting to think you should get a CPU with lots of cores AND high clock speeds. After all, then we’ll have a workstation on which we can work fast AND which can render fast, right?

Unfortunately, because of power consumption and heat limits, there usually is a proportional trade-off between the number of CPU-cores and clock-speeds.

This means the more Cores the CPU has, the lower it will usually clock and vice versa.

The faster the Cores are clocked, the fewer cores there usually are on the CPU.

Many Cores need lots of Power and lots of Power produces lots of heat. CPUs have thermal regulations that need to be adhered to. The same applies to higher clocked cores that will be hotter than lower clocked cores.

This is quite a bummer, but the major CPU Manufacturers wouldn’t be all that major if they hadn’t found a way to improve upon this.

AMD and Intel have thought of a nice way of compensating for some of these trade-offs.

Enter Turbo-Boost.

Turbo-Boost (Turbo-Core)

Turbo-Boost is a feature that automatically overclocks Cores until thermal and power limits are reached. Depending on the Quality of cooling, duration can vary.

Say we are currently modeling and are only really using 1-2 Cores, the rest of the Cores are idle.

What Turbo boost does now is overclock these 1-2 Cores as far as specified by the manufacturer and as long as the Power Consumption and Temperature stays within the predefined limit.

As soon as these limits are reached, the Turbo-Boost will clock these two cores back down.


Image-Source: Intel

This way, to a certain degree, we can get CPUs with more Cores (and a low base-clock), that clock higher on limited cores, when needed and not all cores are being used.

CPU vs GPU Rendering

There are currently two popular methods of Rendering Images and Animations in 3D Software: CPU Rendering and GPU Rendering.

Are you mainly rendering on the GPU or CPU?
  • Mainly GPU 57%, 2584 votes
    2584 votes 57%
    2584 votes - 57% of all votes
  • Mainly CPU 43%, 1988 votes
    1988 votes 43%
    1988 votes - 43% of all votes
Total Votes: 4572
12. Apr, 2019

As you probably guessed, CPU Rendering utilizes the Processor for calculating the Image, and GPU Rendering utilizes the Graphics Card.

There are some differences in GPU and CPU rendering that you want to be aware of when choosing a new Computer or Workstation for 3D Rendering and Modeling:

First of all, almost every popular 3D Software comes with an inbuilt CPU Render Engine nowadays.

Only recently have GPU Render Engines such as Octane, Redshift,  V-RAY RT or FurryBall become mature enough to slowly but surely overtake CPU Render Engines in popularity.

In popularity, because GPU Render Engines are much faster in many cases and allow for extremely interactive preview Renderers.

This can improve and accelerate a 3D-Artists Workflow by a tenfold as you are able to iterate more often before finishing a project.



Beginners are often told to start with 3D Rendering on the CPU and later switch to (often) costly 3rd Party GPU Render Engines when they have learned enough to properly utilize them.

I think this is about to change.

Just look at Blenders in-built Cycles GPU Render Engine and Cinema 4Ds new ProRender GPU Render Engine.  Both GPU render engines are built into the software itself and don’t rely on third-party plugins.

If you had to pick one: Which do you consider your main Render Engine?
  • V-Ray 39%, 1947 votes
    1947 votes 39%
    1947 votes - 39% of all votes
  • Cycles 19%, 956 votes
    956 votes 19%
    956 votes - 19% of all votes
  • Arnold 11%, 544 votes
    544 votes 11%
    544 votes - 11% of all votes
  • Octane 8%, 413 votes
    413 votes 8%
    413 votes - 8% of all votes
  • Redshift 8%, 372 votes
    372 votes 8%
    372 votes - 8% of all votes
  • Other 5%, 258 votes
    258 votes 5%
    258 votes - 5% of all votes
  • Corona 5%, 256 votes
    256 votes 5%
    256 votes - 5% of all votes
  • Mental Ray 3%, 127 votes
    127 votes 3%
    127 votes - 3% of all votes
  • Maxwell 2%, 80 votes
    80 votes 2%
    80 votes - 2% of all votes
Total Votes: 4953
10. Apr, 2019

Best individual Hardware Parts for 3D Modeling and Rendering explained

But enough talk! Let’s take a look at what specific Computer Parts you’ll need for the best Computer or Workstation for 3D Modeling and Rendering:

Best Processor (CPU) for 3D Modeling and Rendering

For Active Work: Intel i9 9900K or AMD Ryzen 3900X

As explained above, you’ll have to make a decision depending on what you will use your computer most for.

Do you use it mainly to Model, Sculpt, Texture, Light, Animate and you spend much more time actively on it, than rendering on it?

Then you’ll want a CPU that is clocked as high as possible!

Good choices here are:

  • Intel i9 9900K, 8-Cores, Clocked at 3,6 GHz Base, 5 GHz TurboBoost
  • Intel i7 9700K, 8-Cores, Clocked at 3,6 GHz Base, 4,9 GHz TurboBoost (No Hyperthreading)
  • AMD Ryzen 9 3950X, 16-Cores, Clocked at 3,5 GHz Base, 4,7 GHz TurboBoost (Turbo Core)
  • AMD Ryzen 9 3900X, 12-Cores, Clocked at 3,8 GHz Base, 4,6 GHz TurboBoost (Turbo Core)
  • AMD Ryzen 7 3700X, 8-Cores, Clocked at 3,6 GHz Base, 4,4 GHz TurboBoost (Turbo Core)
AMD Ryzen vs i7 8700K

Image-Source: AMD/Intel

A great benchmark for finding CPUs that are the snappiest is the Cinebench Single Core Benchmark.

Take a look at this page with Cinebench R20 Benchmarks and sort the Table on the “Cinebench Single” column to find the CPU that will give your workstation the best performance when you’re actively working on it.

What CPU Core-Feature is more valuable / important to you?
  • Having High Core-Clocks for fast active work (e.g. i9 9900K) 54%, 1336 votes
    1336 votes 54%
    1336 votes - 54% of all votes
  • Having a lot of Cores for fast Multi-Processing (e.g. TR 2990WX) 46%, 1132 votes
    1132 votes 46%
    1132 votes - 46% of all votes
Total Votes: 2468
12. Apr, 2019

If you have the budget for an AMD Ryzen 9 3900X, this CPU is currently the best CPU for active Work such as Modeling and Animation. It also sports 12 Cores which gives you nice multi-core rendering performance.

Texturing 3D Models and painting or sculpting, too, need a high-clocking CPU. So if you consider yourself a Graphic Designer, the AMD Ryzen 9 3900X is an excellent choice.

For Render Work? AMD Threadripper CPUs such as the Threadripper 3960X!

Do you use this Workstation less for active work and more to Render out your Projects? Do you spend more time on Rendering than on actually sitting in front of it?

You should consider going into a high core-count direction which are the best CPUs for Rendering (Or if you want a second Computer just for Rendering on).

Good choices here are:

  • AMD Threadripper 3960X, 3970X, 3990X – 24-64 Cores – Highly Recommended!
  • Intel i9 9900X, 9920X, 9960X, 9980XE – 10-18 Cores (quite expensive)

If you want to use VRAY, as it is one of the most popular Render Engines available, have a look at the following page to get an overview of the VRAY CPU Benchmarks Results.

AMD Threadripper 3990X Heat Spreader Bare Photo

The 3990X inside our Review System

Because Rendering demands can be quite high, and a single PC might not be enough to crunch through all of your frames in a short time, be sure to check our Guide on building your own Render Farm.

Which CPU are you planning on Buying?
  • AMD Ryzen (e.g. 2700X, 3700X, 3900X...) 49%, 1464 votes
    1464 votes 49%
    1464 votes - 49% of all votes
  • Intel LGA 1151 Series CPU (e.g. i7 8700K, i9 9900K...) 28%, 841 vote
    841 vote 28%
    841 vote - 28% of all votes
  • AMD Threadripper (e.g. 2950X, 3960X...) 18%, 554 votes
    554 votes 18%
    554 votes - 18% of all votes
  • Intel 2066 (HEDT) X-Series CPU (e.g. i9 10980XE...) 5%, 153 votes
    153 votes 5%
    153 votes - 5% of all votes
Total Votes: 3012
10. Apr, 2019

Best Graphics Card (GPU) for 3D Modeling and Rendering

Best GPU for GPU Rendering: GPU Rendering is becoming more popular as we speak and is likely to overtake CPU Rendering in the near future.

Some of the most popular modern GPU Render Engines are Octane, Redshift, VRAY-RT, and Cycles. The first two only support NVIDIA GPUs, while the latter also support AMD (OpenCL) GPUs.

Personally, I prefer recommending GPUs that work with any of the above Render Engines (CUDA Support), so here are a few NVIDIA GPUs in order of Performance that will give you excellent GPU Rendering Speed:

This Nvidia List could go on, but I think you get the gist.

The higher the number, the faster and the more expensive they get.

Nvidia GPUs 3D Modeling and Rendering


Here is a GPU Render Benchmark overview if you’d like to compare the cost to performance in a bit more detail.

Other great GPU Benchmarks to take a look at are the VRAY-RT, Octane, and Redshift benchmarks.

In more Detail: Why no AMD GPUs?

The question of why we are not recommending AMD GPUs at this time is certainly warranted.

While you can certainly do most of the 3D work with a Radeon RX 5700XT or a similar AMD GPU Model, NVIDIA GPUs just have a much wider support in GPU Render Engines and tend to perform better in many workloads.

While there might be some Engines that support AMD’s GPUs, all of them support NVIDIA GPUs. If you want to be able to jump into different Apps and Engines, going Nvidia is currently the better decision.

AMD Radeon RX 5700 XT

Image-Credit: AMDThis might just be temporary though, as many Render Engine Developers have announced to work on implementing AMD GPU support.

Of course if you know exactly that you will be using ProRender or other Engines with AMD GPU Support, go for it! AMD’s offerings have great value.

Best GPU for Viewport performance

As the Processor is usually the bottleneck in having a snappy Viewport, Graphics Cards shouldn’t usually make a noticeable difference, if you buy good enough.

All the GPUs listed above will perform roughly the same in Viewport performance.

This is because there are rarely features in 3D Applications, that the GPU computes slower than it takes the CPU to update Meshes, Deformers and the like.

In other words: The GPU usually has to wait for the CPU to finish its tasks to continue working.

This being said, if you rely heavily on In-Viewport SSAO, Reflections, AO, Anti-Aliasing and the like, you might want to lean towards the top of the above GPU list for a snappy Viewport.

But for most, a high clocked-CPU will make a much larger difference.

Let’s pick the Nvidia RTX 2070 for our Best Computer for 3D Modeling and Rendering, as it has excellent GPU-Render value and is fast enough for any kind of Viewport challenges.

Nvidia RTX 2070

Image-Source: Nvidia

A quick heads-up:

In rare cases if you only use a few extremely high-poly RAW meshes (such as a CAD-Converted Car with 40 Million Polygons) and you don’t have any modifiers on this mesh, then the GPU will probably be the bottleneck as your workstation only has to update the viewing angle of the Car and not the meshes underlying structure.

Do take a look at our Viewport-Performance Benchmark and top performing CPUs here.

How much and what Type of RAM (Memory) do you need for 3D Modeling and Rendering?

Similar to the CPU, the amount and type of memory (RAM) you’ll need will depend on your use case.

If you work on models with extremely high polygon counts, you will want more RAM than if you usually only do lightweight 3D work with simpler scenes.

I recommend 32GB of RAM for most 3D Artists.

If you sculpt or work on high-poly meshes, use lots of large textures or have complex scenes with thousands of objects in them, you might want to go with 64GB of RAM.

16 GB of RAM can be enough for many starting out with 3D, but usually, you outgrow this quite quickly.

Corsair RAM for Computer for 3D Modeling and Rendering

Image-Source: gskill

RAM speeds & timing can normally be ignored, as these don’t make much of a difference performance-wise.

Getting DDR4-4166 RAM won’t be noticeably faster than DDR4-2666 RAM.

That said, AMD Threadripper does benefit more from higher clocked RAM than Intel CPUs do. This is due to the fact, that some components on Threadripper CPUs are linked to the Memory Clock speed.

So having Quad Channel Memory that is clocked at 2933Mhz might give you a few percents more performance on Threadripper CPUs.

If you do like to optimize your hardware as much as possible, the rule is usually:

The lower the CL and higher the Clock Speed, the better. So a DDR4-3200 CL15 would be slightly faster than a DDR4-2800 CL16 for example.

The new 3rd gen AMD Ryzen CPUs too, benefit from higher clocked RAM.

A note on RAM Kits

When buying RAM, buy the full amount in a single RAM kit. RAM Kits (which are RAM Modules packaged together) are pre-tested in the Factory and will work well together.

Although people often say you can buy some RAM now and add some more laterRAM modules sometimes don’t work well together.

So if you are getting entirely new RAM for your PC, be sure to get (for example) 4x8GB in a KIT and not 2x8GB + 2x8GB in two separate KITs.

Why should RAM in different KITs be different from each other?

The reason why RAM in different kits differ from each other is because they can be manufactured in different factories and different factory lines that use slightly different silicon, or because one RAM module might have been manufactured in 2017, while the other module was manufactured in 2019. You don’t know for sure that the timing on the RAM will be exactly the same between modules from different factories or different manufacturing dates.

My point is: get a kit that’s pre-tested.

Good RAM Brands are G.Skill, ADATA, Crucial and Corsair such as the Corsair 16GB Vengeance LPX Ram Kit or this 32GB Corsair RAM Kit.

Best Motherboard for 3D Modeling and Rendering

The Motherboard or Mainboard is the Hub that connects all of your hardware components together.

MSI MEG X570 Unify Hero

Image-Credit: MSI

It’s unlikely to impact performance all that much, but you should make sure it has all the features you need. Some important things to take note of are:

  • CPU Socket type: Different CPUs need different Sockets. Make sure your motherboard has the right socket for your CPU.
  • Memory Maximum: Some Motherboards/Chipsets can only support a certain amount of RAM and only have a certain number of RAM slots. Make sure it supports the amount of RAM you want.
  • Max # of GPUs: Motherboards support a certain number of GPUs and have a certain amount of PCIe slots and lanes that your GPU will use. Make sure you have enough for the number of GPUs you want.
  • Support for M.2 (NVME Drives): If you want an M.2 PCIe drive, make sure your motherboard supports this kind of drive (the motherboard’s manual is your friend).
  • Size of the Motherboard: Motherboards comes in different sizes. Make sure your motherboard fits inside your computer case (and vice versa too, of course).

I understand this might start to sound a bit complicated, and perhaps a bit too much to handle, particularly if you’re a first-time PC builder.

This is why I have built a few workstations for you, so you won’t have to figure out every detail on your own.

If you are leaning towards a 3rd gen Ryzen build, do check out this Article on what Motherboards are best for Ryzen 3000 Series CPUs.

Best Storage for 3D Modeling and Rendering

The speed of the storage is responsible for a few things:

  • Saving and loading your scene Files
  • Storing and loading your Textures, Assets, References
  • Swapping to disk if your RAM is full
  • Launching your Software

If you want to load your scenes quickly, you’ll need a fast disk.

A feature like autosave (which I highly recommend you always have ON) will save your scene faster if you have a fast disk. On the other hand, a blazingly fast disk won’t do much for your performance once your scene is loaded into RAM.

I recommend going for at least a SATA SSD such as the Samsung 860 EVO for your OS and your Scene Files.

Consider a PCI-E M.2 SSD such as the Samsung 970 EVO if you want even faster Performance and don’t mind spending the extra money.


Fortunately, flash-based SSDs have become quite cheap recently and prices continue to drop.

Just have a look at the price decrease of the Samsung 860 EVO 1TB over the last years:

860 Evo Price History


It usually is a good Idea to get a larger HDD to be able to periodically backup your Data in case your main Discs brake down out of unforeseeable reasons. As they tend to do in the middle of the most important Project.

About PCI-E-Lanes

This section is a bit more advanced, but I get this question often enough that I want to explain it. Feel free to skip this part.

Here’s the Question: If the i7 8700K, i7 9700K, i9 9900K CPUs only offer 16 PCIe-Lanes, how can you use NVME SSDs (that already need 4 PCIe-lanes) or SATA Drives, if your GPU already uses up all of the 16 PCIe-Lanes to the CPU?

Answer: While the CPU-GPU PCIe-Lane interconnect is 16 PCIe Lanes wide, the Chipset itself can create 24 additional PCIe Lanes if required (on the Z370/Z390 Chipset).

The chipset lanes are connected to the CPU through a DMI link that’s only 4 PCIe lanes wide (which is roughly 4GB/s).

There could be a bottleneck in the unlikely scenario that you continuously copy huge amounts of data (like 50GB) from one of your NVMe SSDs to your second NVMe SSD and if your NVMe SSD can read and write faster than 2GB/s.

While that type of sequential read/write is possible (with the 970 EVO it is), it’s extremely rare that you’ll continuously be reading and writing sequentially for files that are of such size. If anything, you’ll be reading/writing randomly and on much smaller files.

Everything except for the RAM and the GPU is connected to those 24 chipset PCIe lanes, which are themselves connected to the CPU through the DMI link that’s 4 PCIe lanes wide. This includes LAN, USB, and everything else you plug into the motherboard.

amd x570 chipset features

Image-Credit: AMD

The PCIe lanes from the chipset to the CPU are not used from the moment you plug in a new component. Instead, think of these PCIe lanes like highway tunnels: they’re always there and let traffic through if it has to.

So you can attach up to 24 PCIe lanes worth of components to the chipset (SATA SSDs, HDDs, USBs, Ethernet cables, etc…) but they will only connect to the CPU and use Bandwidth when needed.

If you use all those components at maximum speed at the same time, then you would bottleneck. In such a scenario, you would need to turn towards the HEDT platform (such as the LGA 2066 or TR4) and not mainstream (1151, AM4).

Best Monitor for 3D Modeling and Rendering

It’s usually better to go for a monitor with an IPS panel instead of a TN panel. IPS display panels have better color and better contrast.

If you’ll spend many hours a day staring at your monitor, you’ll want a non-glare (matte) monitor. This will avoid hard reflections that could otherwise distract you.

You also want at least a Full HD 1920×1080 monitor that nicely fits the viewport and all your software. You might even want to consider higher-resolution monitors with a 2560×1440 or even a 4K (3840×2160) resolution, so you can fit more of your footage, references, and software windows.

This is particularly true if you’re working on 4K advertising and films, or on hi-res images.

Best Monitor for Graphic Design, Video Editing, 3D Animation: Dell

Image-Source: Dell

I’ve had great experiences working on Dell IPS monitors, such as the Dell UP2716d, but you might prefer a different brand.

How many Monitors do you use?
  • Two Monitors 55%, 1468 votes
    1468 votes 55%
    1468 votes - 55% of all votes
  • Just one Monitor 32%, 861 vote
    861 vote 32%
    861 vote - 32% of all votes
  • Three Monitors 10%, 272 votes
    272 votes 10%
    272 votes - 10% of all votes
  • More than 3 Monitors 2%, 62 votes
    62 votes 2%
    62 votes - 2% of all votes
Total Votes: 2663
10. Apr, 2019

Check out this in-depth Guide to buying the best Monitors for visually demanding work, which has all the information you need for getting the best Monitor for your specific kind of work.

Best Power Supply (PSU) for 3D Modeling and Rendering

While an expensive PSU won’t increase your performance, it’s wise to get more than enough wattage.

Usually, you’ll want around 400-500 Watt for a regular build, with an additional 250W for every additional GPU.

Corsair AX760W PSU

Image-Credit: Corsair

Good PSU brands are Corsair, Seasonic, and beQuiet.

Here’s a PSU calculator that will tell you how many watts your PSU will need depending on the hardware you choose.

Build your own Computer!

The best computer for 3D modeling and rendering is a computer that’s fast, makes you spend less time on it, avoids you wanting to punch through your monitor, and shouldn’t cost you an arm and a leg.

I get tremendous joy from building my own computers for 3D modeling, rendering, and many other use cases.

If you don’t build your own PCs yet, I’m sure you’ll learn to love it too.

Do you assemble your PC yourself or buy Pre-Built?

Building your own computer teaches you the inner working of the various hardware components while allowing you to gradually upgrade parts if so required and helping you find potential problems easier.

But the best part? It’s a lot cheaper than buying pre-configured computers, and it only takes an hour or two to assemble!

If you want to learn how to assemble a PC and how a computer actually works, I have an excellent book for you. It blew my mind a few years ago. You might’ve already read it, but for those of you who haven’t: prepare to be leveled up 🙂!

But How Do It Know – J. Clark Scott

I can’t stress it enough: assembling your own computer is not difficult. You more or less just plug different parts needed to build a PC into one another and tighten some screws. The hardest part seems to be adding a bit of thermal paste to the CPU. That’s it!

Here’s a nice tutorial video for you to follow along as you build:

Whew! That was quite a lot of theory. Let’s actually take a look at some functional PC builds.

Here are some Pre-Selected Builds in different Price Tiers:

Best full PC-Build Recommendations at different Price points

Best Computer for 3D Modeling and Rendering, AMD at roughly ~700$

Some Build notes:

This very low-budget Build can be made even cheaper if you use the CPU Cooler that comes with the CPU. It doesn’t have as great a Cooling Power as the CoolerMaster Hyper 212, but this is not entirely necessary with such a CPU.

Some CPU upgrades include the Ryzen 7 2700 or 2700X if you have some extra cash.

Best Computer for 3D Modeling and Rendering, AMD at roughly ~2000$

Some Build notes:

This is a basic AMD build that you can begin with. The Case is professional, minimalistic and quiet. There is room for 3 Optical drives in case you want to add some DVD/CD Drives.

The AMD Ryzen 9 3900X is the fastest of the third Generation Ryzen CPUs. It has excellent Multi-Core and great Single Core performance. Be sure to take a look at this article on the best motherboards for Ryzen 3rd Gen CPUs, to see which one exactly you will need.

I added a Samsung 970 EVO PLUS M.2 NVMe Drive in this build that will give you extreme Storage Performance. The Nvidia RTX 2070 will get you great performance at a good price.

Best Computer for 3D Modeling and Rendering, Intel at roughly ~2000$

Some Build notes:

Just like the AMD Build, this is a basic build that you can build upon. The Case is professional, minimalistic and quiet.

The Intel i9-9900K is the currently leading CPU in single-core performance, meaning your viewport and active-work speed will not get any faster than with this CPU.

If you are planning on some more extreme overclocking, you might want to consider an AiO CPU cooling solution.

Best Computer for CPU Rendering, AMD at roughly ~3000$

This is an excellent Build that leans towards CPU Rendering Performance and slightly less towards active-working performance in tasks such as 3D Modeling or Animating.

Some notes on this build:

As this build is focused on CPU Rendering, the other parts such as storage and GPU are proportionally low-end compared to the 32-Core Threadripper CPU. This build has an absolutely fantastic CPU Rendering Performance.

64GB of RAM is a lot. It should be more than enough for nearly all scenes. You can save some cash by downgrading to 32GB though.

Best Computer for GPU Rendering, AMD at roughly ~7100$

This is an excellent Build that will bring you the maximum plug & play GPU Rendering Performance (on a single Consumer Mainboard) combined with an excellent CPU for good Workstation performance. But it comes at a steep price.

Some notes on this Build:

4 GPUs need a Motherboard with 4 PCIE Slots that are spaced far enough from each other to allow for 4 dual-Slot GPUs. This is possible with the Gigabyte X399 Designare EX Motherboard.

At ~$1,200 each, RTX 2080TIs are expensive.  If you’re okay with slightly slower performance, but want to save a decent chunk of money, I recommend going with 4x RTX 2070, as these come in at around $550 each. You’ll only have 8GBs of VRAM per card, but the GPU rendering performance/price is much better.

The Case is big. It has room for 8 single-slot (or 4 dual slot) Cards. The Power Supply should provide at least 1250W and I added some headroom here with the excellent 1600W Corsair Titanium Power Supply.

Threadripper CPUs are excellent for multi-GPU setups, as these CPUs have 64 PCIE-Lanes to drive all of those GPUs in 16x and 8x Mode.

– All of these builds will of course need a Keyboard, Mouse, Monitor and Operating System to be complete, but I’ll let you figure those out on your own. –

Custom PC-Builder

If you want to get the best parts within your budget you should definitely have a look at the Web-Based PC-Builder Tool that I’ve created.

Select the main purpose that you’ll use the computer for and adjust your budget to create the perfect PC with part recommendations that will fit within your budget.

Be sure to check it out and please feel free to send feedback my way!

CGDirector PC-Builder Tool PC-Builder Title Image

If you are not quite sure yet what general kind of Computer, Desktop, Workstation or Laptop you need and you are still looking for some beginners help, check out this Article on finding exactly what kind of Computer you need.

Best Laptop for 3D Modeling and Rendering

Just a quick reminder for anyone who would like to get a Laptop instead of a Desktop PC or Workstation.

I have written an Article about what’s important in a Laptop for Animation or Laptops for Video Editing, if that’s a direction that interests you too. Go check it out!

A lot of the specs from 3D Animation will be exactly the same as for 3D Modeling. For CPU rendering, this article on the best CPU for rendering can help you out.

What kind of Computer or Workstation are you building?

Alex Glawion - post author

Hi, I’m Alex, a Freelance 3D Generalist, Motion Designer and Compositor.

I’ve built a multitude of Computers, Workstations and Renderfarms and love to optimize them as much as possible.

Feel free to comment and ask for suggestions on your PC-Build or 3D-related Problem, I’ll do my best to help out!



What’s the best computer I can build for modeling if my budget is only approx 1200-1300? Plese help. Thaksn!


Can you also suggest a cheap but very good monitor for this? Someting in the price range of 125-150 please. Thanks!


Hi Alex!

Thanks for all your invaluable information!

Finding it a little bit difficult to see the pros and cons of motherboards.

The 2 boards I’m looking at:

Asus Pro WS X570-ACE

ASUS Prime X570-Pro

The first one is no bells and whistles obviously but I do like the idea of building a white station. Any ideas if one is much better than the other? My plan is to eventually have 2 x rtx 3080’s later this year.




Hi Alex,

Your website is the most informative that I came across and is really well done.
I want to build a pc that is versatile for cad, 3d modelling, and rendering. I’m using Autocad, Sketchup, 3dsmax, and Rhyno and for rendering Vray. Right now my budget is about £1800. In the future, I’m thinking of adding an extra gpu card. I,m stuck of choosing the right case so that is not too small and also the right motherboard plus power supply any recommendations?

My chosen components so far

– Motherboard: Asus Pro WS X570-ACE AM4 ATX
– CPU: AMD Ryzen 9 3900X
– CPU Cooler: be quiet! Dark Rock Pro 4 AM4
– GPU: Gigabyte GeForce RTX 2070 SUPER WINDFORCE OC 3X 8GB
– SSD: Samsung 970 EVO PLUS 1TB £203
– MEMORY: 32GB (Corsair Vengeance LPX DDR4-3200 CL16)

Kind Regards,



I’ve been having a hell of a time trying to find a good power supply at 850W. The RM Corsair that PC builder recommends isn’t available here. Could you help me with a good reliable alternative?
How do I even choose one? I tried using a tier list I found on google but it ended up confusing me even more. Everything I find in my region seems to be Tier C or worse. I think.


Alex Glawion

Hey Nate,
We are actually currently working on a PSU guide, so stay tuned for that. It boils down to this:
– Wattage
– Efficiency
– Modularity
– Fan Noise / Passive
– Brand
– (And some internal power stuff)

Efficiency is probably the biggest factor in pricing. It basically tells you how much power is wasted from the PSU at specific loads. The less power is wasted, the more expensive they are (Bronze / Gold is OK in terms of efficiency, but platinum and Titanium are best)

Here are some good PSUs that might be available in your region:

– be quiet! Dark Power Pro 11 850W ATX 2.4
– Corsair Professional Series HX850i 850W ATX 2.4
– EVGA SuperNOVA G2 850 850W ATX 2.3
– Seasonic Focus Plus Gold 850W ATX 2.4
– Seasonic Prime Ultra Titanium 850W ATX 2.4

Hope this helps,


Thanks! Found the Seasonic here. It’s good for workstation loads, right? I work with VFX.
Waiting for the power supply article then, I love the way you guys cover and explain technical topics. Thanks again!!


Hi Alex,

I want to build a PC mostly for work 3D Modeling & Rendering.
After doing some research I came up with this configuration, but I need your expertise to know if it’s a good configuration.

PROCESSOR: AMD Ryzen 9 3950X 3.5GHz 16-Core Processor
MOTHERBOARD: Gigabyte Motherboard X570 AORUS MASTER or ASUS ROG Crosshair VIII Hero X570
RAM: 64GB (16×4) DDR4 Trident Z Neo 3600MHz
PSU: CORSAIR RM 1000X 80 Plus Gold
CASE: Lian Li O11 Dynamic (White) or Cooler Master H500P MESH (White)

I will be doing both Active and Rendering work with this system.
SOFTWARE: 3DS Max, Vray, Corona, Sketchup, TwinMotion, Adobe After Effects & Premiere Pro.

These are the major software.
Right now I am having GTX 770 card with me. My plan is to use this card as a secondary card for my dual monitor Display as of now and later change with another RTX 2070 Super, for now, I will go with a single new RTX 2070.

Please advise me if this configuration is good and weather 2 GPU will fit in this CASE: Lian Li O11 Dynamic (White) or Cooler Master H500P MESH (White).

What is your suggestion on this RAM configuration (64GB (16×4) DDR4 Trident Z Neo 3600MHz) VS (64GB (32×2) DDR4 RIPJAWS 3200MHZ)? Which one to go ahead. 

Alex Glawion

Hey Goutam,
Great build config! Both Motherboards have the same pcie layout so you’ll be able to use two GPUs with both. The entire Feature set in those boards is very similar, the LAN, the amount of m.2. The VRMs are a bit stronger on the Gigabyte Board though and you have bluetooth + wlan on the Gigabyte. Either way both boards are great and will work nicely with the 3950X and 2 gpus.

Do note though, that the GPU variant you chose is triple-slot, meaning two of those will be tightly stacked right on top of each other. While they do fit, they will have trouble getting air in such a tight stack. I recommend going with dual-slot gpus or / and getting blower-style cooled gpus that push the air out the back of the case, instead of inside.

Asus Turbo, MSI Aero, Gigabyte Blower, Zotac Blower.

You parts will fit into both cases, the 360mm rad, the atx motherboard and the two gpus. No issue here 🙂

Apart from the triple-slot gpus, this is a great build for your workloads.



Thank You so much Alex.

Tomer V

Hey, will be glad to get some help 🙂
Civil 3D, Infraworks
3700X +
P2200 5GB or 2060 Super 8GB?


I’m building a new workstation for a relative,
for *Civil 3D and Infraworks*.
The problem is I’m not really sure for which category this 2 softwares belong,
and unfortunately the relative doesn’t know anything about hardware.

She got a “generic” specs recommendation from her old office,
which includes i7 9700, 32GB Ram, Quadro P2000 5GB.

After some reading etc~
512 NVMe

only thing left is a GPU.
I can fit in budget one of the following:
P2200 5GB GDDR5x
RTX2060 Super 8GB GDDR6

will the 2060 will perform significantly better then the P2200?
which one of them will you recommend for this softwares?

Alex Glawion

Hey Tomer,
As always in the pro vs mainstream gpu discussion we can say the following:

Mainstream GPUs will be faster and have better value, so the 2060 super will perform better than the p2200.

BUT, Autodesk officially only supports you if you use certified gpus and mainstream gpus are not certified meaning you’ll only get official support from them if you use hardware they have certified.



What are the advantages of quadro?

Alex Glawion

Hey Mayixb,
Check this article here for an in-depth answer to that!

in short: You’ll need quadros only if you have extreme VRAM requirements, need professional software support / certificated drivers, or use apps such as solidworks that come with features only supported by pro gpus.

If none of that applies to you, get a mainstream gpu. 🙂



Hi Alex – thank you so much for the article. We are looking to build a workstation for GPU rending to use Redshift, C4D, Houdini. We have a budget of £10,000. Do you believe the most expensive workstation in this list has the best performance for this budget? Or do you think we could pay a bit more to improve performance, bringing it nearer to our £10,000 budget?

This is a setup we were thinking of going with. Or do you believe the ~7100$ build in this article would be a better fit for GPU rendering.

MB: Asrock TRX40 Creator
PSU: Corsair AX1600i Digital
CASE: CORSAIR Graphite Series 780T
CPU COOLER: Thermaltake Water 3.0 Riing RGB 360
CPU: AMD Ryzen Threadripper 3960X
MEMORY: G.Skill Trident Z Neo 128GB (8x 16GB 3600 MHz – CL16 )
DRIVE: Samsung 970 EVO Plus 2TB + Samsung 970 EVO Plus 1TB
GPU’s: 4x PNY RTX 2070 Super Blower

Thank you!

Alex Glawion

Hey Jason,
The 7100$ Build is a specialized build for GPU rendering. It is not necessarily meant for active work, though the Threadripper 1900X of course is a decent cpu anyway.

The parts in your List are probably around 5k$ because the RTX 2070s should be quite cheap.

For Redshift and a 10k Pound budget, I’d definitely get higher-tier gpus though. Why don’t you do this: Swap your 4x 2070 with 40 2080Tis and that will take care of it. Good active work performance with the TR3 3960X and great redshift performance with 4x 2080 Ti.



Hi Alex,

What is the difference in terms of performance between GPU rtx2070 Super VENTUS and Gaming X, and GamingZ if i m intended to use GPU for 3d rendering of 3d CAD modeling? Want to UPGRADE my CPU too, which one is the best and cpu that has high clock for active work and good base clock and enough core for multi task process? Considering i have a limited budget.

Willy again.

Alex Glawion

Hey Willy,
You will see almost no differences between those GPU variants, especially in rendering. They will have minimally different clock/memory speeds and cooling solutions and some of the cards might be thicker than other and need more room. Performance-wise you can expect all of them perform about on par.

For a CPU it really depends on what your budget is. You can get a Ryzen 5 3600 for relatively cheap, or if you have more, go with a 3700x.



Thanks Alex for your valuable advice.

U mean by thicker than others due to the ventilation fan number or ventus is thiker?

For the CPU, i m Considering either ryzen 5 3600X or directly go for ryzen 9 3900X but if ryzen 5 3600X can handle smoothly tasks with some active softwares like CAD, revit etc, active work plus some cpu rendering and 3d modeling softwares with abaqus, ansys, fluent, matlab..then, i might go for it, with a 32 g of RAM 3200, maybe will upgrade to 9 3900X in the future or even with the 4th generation cpu

Alex Glawion

Both the gaming x and gaming z are triple slot gpus. The Venuts is just dual-slot. This of course is only important if you have limited space in your case for the gpu (or want multiple gpus)

The 3600X is an excellent cpu that will be able to handle the activty tasks you listed. Of course it falls far behind in cpu render performance vs the 12-core 3900x though.



hello Alex

I have been learning on 3d programs lately such as Maya, cinema 4d, blender .. unfortunately my computer is about to die because the rendering.
So I ask you if you can help me to buy a good pc, also I will use design programs.
here is my budget ( 1600$ )
Thank you so much !

Hi Nora,

Thanks for dropping a comment!

For your budget of $1,600, you can get an all-rounder build like the below:

Parts List:

CPU: AMD Ryzen 9 3900X 3.8GHz 12-Core Processor ($431.99)
CPU Cooler: be quiet! Dark Rock Pro 4 AM4 ($87.83)
Motherboard: Gigabyte X570 Aorus Elite ATX AM4 ($209.99)
GPU: GIGABYTE GeForce RTX 2070 ($399.99)
Memory: 32GB (2 x 16GB) Corsair Vengeance LPX DDR4-2666 CL16 ($138.99)
Storage PCIe-SSD: Samsung 970 EVO PLUS 500GB M.2 Solid State Drive ($124.88)
Power Supply: Corsair RMx Series RM650x 650W ATX 2.4 Power Supply ($119.99)
Case: Corsair Carbide Series 275Q ATX Mid Tower Case ($89.99)

The total cost of the build is around $1,603.65 but you can expect snappy active work speed from the Ryzen 3 3900X and 32GB of RAM. In addition to that, the RTX 2070 graphics card has got your GPU rendering tasks covered thanks to its CUDA core acceleration. All in all, this is an all-rounder build that will deliver great performance.