What is the Best GPU for Video Editing and Rendering?

CG Director Author Christopher Harper  by Christopher Harper   ⋮   ⋮   21 comments
CGDirector is Reader-supported. When you buy through our links, we may earn an affiliate commission.
What is the Best GPU for Video Editing and Rendering?

Buying a new graphics card (GPU) can be tough, especially if you aren’t familiar with all the nitty-gritty tech jargon involved.

For most consumers in the market for a graphics card, all they really need to do is learn how the graphics card will perform in their favorite games, and their purchasing decision is set… but if you want to buy a GPU for, say, video editing or 3D rendering…

It gets quite a bit more complicated than that.

Fortunately, we’re here to help, and we’re happy to.

If you have any questions left after reading through this article, feel free to hop down to the comments and talk to us.

If you already feel like you know everything you need to know, you can also click the button below to go ahead and skip down to our recommendations.

Let’s hop in:

What sets apart a rendering GPU from an editing GPU, and other concerns

Especially if you’re new to graphics technology, chances are you have a lot of questions that need answering.

We are going to assume a basic level of familiarity here- i.e., you know that GPU stands for Graphics Processing Unit, and that a graphics card is an expansion card containing one or more GPUs. (Usually just one these days, multi-GPU-in-one tech has fallen by the wayside.)

Nvidia RTX 2070

Image-Source: Nvidia

What’s the difference? Pro GPU vs Consumer GPU

Nowadays, consumer GPUs and pro GPUs look more similar than ever before.

A few GPUs even blur the lines a bit, like the Radeon VII from AMD or the Titan line from Nvidia.

These are cards with super-inflated price tags and unreal amounts of VRAM, after all.

Today, let’s look at Nvidia RTX GPUs. What is the difference between a consumer-facing GeForce RTX card compared to a professional-facing Quadro RTX card?

Nvidia Quadro RTX 8000

Image-Credit: PNY

They’re both using the same hardware architectures, and can sometimes be specced the same down to processing cores and VRAM, but with the Quadro being priced several times more…is it just a scam?


Pro GPUs

The big difference between consumer and pro GPUs is software.

Quadro cards from Nvidia and FirePro cards from AMD are optimized specifically for high-end productivity applications, with extremely thorough guaranteed compatibility with the leading industry apps.

Additionally, they’re supported for years and treated as long-term investments in a way that consumer graphics cards are not.

Pro GPUs are tested with industry apps, and drivers are optimized to make them run the best they can. Many high level industry Apps, such as the popular CAD-Application Solidworks, have special features (such as RealView in Solidworks) that are only supported if you have a pro GPU.

For example, the following Image shows Solidworks’ officially supported Nvidia GPUs:

Solidworks supported graphics cards

Image-Source: https://www.solidworks.com/sw/support/videocardtesting.html

Some Software Vendors only support you and help with bugs or maintaining your Workstation if you are using a pro GPU.

This is crucial for large companies, where server or workstation up-time is of utmost importance to keep their expensive staff working at functional PCs at all times.

Consumer GPUs

A consumer GPU will be great at gaming and consumer applications.

They can also be really good at photo and video editing, and strong consumer GPUs (like a Nvidia RTX 2080Ti) are often over-specced for that kind of job.

Consumer GPUs are also great for GPU-Rendering, as GPU Render Engines don’t usually have features that would only work on pro GPUs.

A pro GPU, though, will usually be…not very good at gaming, but superb for editing, rendering, and pretty much any other pro-level task,  however, they will come at a much higher price point for the same performance.

So if you know the Software you are using does not use features that requires a pro GPU and you don’t need the huge amount of VRAM in pro GPUs, a Consumer GPU will almost always be the better choice, especially when looking at performance / dollar.

But let’s dive into some more specifics.

CUDA cores, or why Nvidia is being favored here

CUDA cores refer to the special processing cores found inside of Nvidia GPUs, which are exclusive to Nvidia.

Multiple Cores CPU vs GPU

CUDA stands for Compute Unified Device Architecture, and these cores inside Nvidia GPUs essentially serve as raw computational power, rather than raw graphical power.

That’s why they are used to power computationally-intensive effects in supported titles, like Nvidia HairWorks, where a GPU alone wouldn’t be adequate enough to do the job.

For the purposes of editing and rendering, CUDA cores are an indispensable source of extra computational power to throw at a given task.

Most editing and rendering applications are optimized in some way to utilize CUDA cores, so having more in your system will allow you to achieve better, faster renders of your models, videos, and more.

Some popular GPU Render Engines like Octane and Redshift are built upon Nvidia’s CUDA, meaning you can only use these if you have an Nvidia GPU. In such render engines, the render performance scales almost linearly with the amount of CUDA Cores your GPU has.

Some Applications, like Adobe’s After Effects or Premiere Pro bring support for both Nvidia and AMD GPUs, but often run faster on Nvidia GPUs.

GeForce or Quadro?

GeForce will give you the best value for your money when it comes to things like editing video and raw 3D application performance.

However, since GeForce is a brand aimed primarily at gamers and common consumers, there can be some features missing that high-end professionals might need.

Quadro can provide high performance in many applications, but the main point of attraction is its software support for enterprise users.

Any performance gained comes at a severe price premium when compared to GeForce.

Nvidia GeForce vs Quadro

If you need ECC (Error-correcting code memory) or the absolute best drivers for your professional applications, though, Quadro is the best choice –

GeForce is focused on games and consumers, Quadro is focused on business and enterprise users.

Additionally, Quadro will also be specced with much higher CUDA core and VRAM counts, and will sometimes have exclusive features like ECC, which we’ll elaborate on a bit later.

Overall, we recommend Quadro to users who:

  • Can write off the high prices as a business expense
  • Can make use of ECC, higher amounts of VRAM, higher Floating-Point precision, higher Monitor Bit-Depth
  • Need special Software features only supported on Pro-Level GPUs (e.g. Solidworks, Autocad … )
  • Regularly rely on the Software Vendor’s Maintenance and Support
  • Need their hardware to be thoroughly tested for durability and stability in enterprise- or server-environments, even at 24/7 uptime

We recommend GeForce to users who:

  • Don’t make use of features only supported on PRO-level GPUs
  • Want more bang for their buck
  • Don’t necessarily need high amounts of VRAM or ECC
  • Don’t rely on regular software support from their Application’s Vendor
  • Might also want to game every now and then

Do I need RTX?

Nvidia’s “Turing” Architecture is the first to introduce RTX, which brings some a few new features on top of CUDA cores- namely, RT and Tensor cores.

RTX Raytracing Cores and Tensor Cores

Image-Source: Nvidia

RT cores are for ray-tracing purposes, and built exclusively for it.

For professional rendering, having a more powerful ray-tracing GPU can greatly accelerate the workload, at least in supported applications.

If you have no need for a ray-tracing GPU (especially if you’re focused on, say, video editing instead of 3D rendering), then the presence of RT cores are unlikely to make much of a difference.

Tensor cores are another story, and become quite a bit more interesting.

In consumer GPUs, Tensor cores are used to achieve things like DLSS (Deep Learning Super-Sampling), which uses AI to improve image quality.

For professional use, Tensor cores can be leveraged for their great FP16/FP32 and INT4/8 capabilities, which make them ideal for neural networking, deep learning, AI, etc.

If those areas sound like something that your business wants to explore, Quadro RTX may be what you’re looking for.

RT Cores can also speed up your rendering quite a bit, at least in supported Render Engines. Octane and Redshift for example are working on an implementation to make use of RayTracing Cores.

In summation, RT and Tensor cores add some nifty extra features that may or may not make a difference to your workload.

However, we still recommend getting RTX GPUs over past-gen Nvidia GPUs, because even without leveraging these extra processing cores, the latest RTX GPUs do boast significant performance improvements over their non-RTX predecessors.

What do you need from an editing GPU?

Video Editing, mercifully, requires a much less demanding GPU than for professional rendering.

Even your basic consumer GPUs from Nvidia with CUDA cores will do the job here, especially if you’re just a single content creator doing freelance work or posting to sites like YouTube.

Take a look at the following Premiere Pro Video Editing Benchmarks by Pugetsystems, that clearly show where the GPU Sweet Spot lies:

Premiere Pro GPU Benchmark Nvidia Geforce

Image-Source: Pugetsystems

Video and photo editing do not require the bloated specifications and price tags of Quadro GPUs by any stretch of the imagination, so you’ll be perfectly suited with a lower- or mid-tier GeForce RTX GPU.

If your needs are a bit more enterprise-level (ie, 4K/8K HDR video), then you may want to opt for a higher-end GeForce RTX GPU.

What do you need from a rendering GPU?

From rendering GPUs – explicitly 3D rendering in a professional environment – you’ll want a lot more from your GPU.

The biggest thing that you’ll need from a rendering GPU (given it is compatible with the render engine you are using), are the highest possible number of CUDA Cores and VRAM.

The time it takes to render an average Frame on your GPU is almost linearly inverse proportional to the amount of CUDA Cores your GPU has.

CUDA Cores vs Render Time

The GPU though can only make use of its huge CUDA Core performance, if the 3D Scene Data fits into its VRAM (Video Memory on the GPU).

This means, if you know you have very complex scenes with millions of polygons, sub-poly displacement or things like large textures, your need for VRAM will be much higher than if your scenes are fairly simple with only a few objects.

Most GeForce RTX GPUs already have a decent amount of VRAM, usually between 8 and 11GB, but if you need even more, you’ll have to go with a Quadro RTX GPU which sports up to 48GB of VRAM.

In Quadro GPUs, you also get ECC, which we’ll explain now.

ECC: What it is, and why you might need it

ECC refers to Error Correcting Code Memory.

ECC memory detects and corrects data errors that naturally occur over the course of long-term, high-intensity workloads.

These errors are what cause seemingly-random events like data corruption or system failure, and must be avoided at all costs when fragile enough data is being dealt with.

That’s why ECC is most commonly used in servers and enterprise PCs- in order to prevent these errors from occuring when they would cause the worst damage.

In GPUs, ECC is exclusive to professional GPUs from Nvidia and AMD.

In Nvidia’s case, these are present only in Nvidia Quadro GPUs, and are necessary in order to prevent fatal errors in certain scenarios.

Most consumers and creators, however,who are not integrated into an enterprise workflow, can safely ignore ECC.

Evaluating performance

The first and best way to evaluate the performance of a given GPU is to look into benchmarks.

Normally, consumers will look at benchmarks of games and other applications in order to get the best idea of how a given component may perform.

The same bit of wisdom generally applies here, but you do need to know what benchmarks you should be looking at.

For GPU rendering purposes, you have benchmarks of popular GPU Render Engines like OctaneBench, Redshift, and VRAY-RT.

Other resources may help as well, including Passmark’s GPU Compute Benchmark chart (for gauging DirectCompute/OpenCL performance).

In addition to benchmarks, there are also core specifications, which we’ll be listing under each of our picks below.

The core specs that we’ll be tackling are:

  • CUDA Cores – Corresponds to raw processing power (great metric for 3D Render Performance)
  • Tensor Cores – Corresponds to deep learning/AI capabilities, as well as FP32/16 workloads
  • RT Cores – Corresponds to ray-tracing performance, which can be an accelerator for 3D Rendering in supported Render Engines
  • VRAM – For managing larger scenes, edits, etc. without overfilling memory
  • GPU Clock – A measurement of GPU core speed

Top GeForce and top RTX GPU Specs Table

Note: Actual prices may vary. Quadro RTX cards will often be much cheaper than MSRP, while non-Quadro cards will often be somewhat higher or lower than MSRP.

 CUDA CoresTensor CoresRT CoresVRAMGPU ClockMSRP
RTX 2080 Ti43525446811 GB GDDR61350 MHz (Base)$1199
RTX 2080 Super3072384488 GB GDDR61650 MHz (Base)$699
RTX 2070 Super2560320408 GB GDDR61605 MHz (Base)$499
Quadro RTX 800046085767248 GB GDDR6 (ECC)1395 MHz (Base)$9999
Quadro RTX 600046085767224 GB GDDR6 (ECC)1440 MHz (Base)$6299
Quadro RTX 500030723844816 GB GDDR6 (ECC)1620 MHz (Base)$2299
Titan RTX46085767224 GB GDDR61350 MHz (Base)$2499
Titan V5120640012 GB HBM21200 MHz (Base)$2999

As you can likely tell from this table, the biggest hardware differences come down to massively boosted VRAM (with ECC), and significant boosts to CUDA, Tensor, and RT cores, at least on the high-end.

Apart from the inclusion of ECC, Titan RTX also offers similar specs to high-end Quadro RTX cards.

Key take-away:

The main reason to opt for Quadro over GeForce is for enhanced stability and driver support for enterprise-level software – otherwise, GeForce cards can get similar performance in many scenarios for much cheaper.

Should I bother with Dual GPU?

If you were building a gaming system, our answer would be very simple: no, absolutely not.

In terms of gaming, multi-GPU support has greatly fallen by the wayside and isn’t recommended.

But for productivity…well, that’s another story.

Whereas gaming needs to make use of standards like SLI in order to utilize multiple GPUs for rendering one scene, most editing and rendering apps are made with distributed workloads in mind.

This means that not only do you not need the GPUs working in perfect harmony in order to benefit from having two cards at once, but that you’ll see an essentially-linear 2x performance improvement for adding another GPU to your workload!

Multi GPU for Rendering

Dual GPUs though isn’t the high-end. As adding more cards to your compatible system gives you a near linear performance increase in workloads such as 3D-GPU-Rendering, it is quite common for 3D-Artists to have HEDT PCs with up to 4 GPUs.

A short bit on Nvidia’s NVLINK:

To make use of NVLINK memory sharing you will need GPUs that are of a higher-Tier than an RTX 2070 Super, though. Also, you can’t share memory between more than two GPUs at a time with NVLINK and need Render Engine Support for this features to be utilized.

You will need NVLINK Bridges to connect two of your cards with each other.

Dual- / Mulit-GPU Setup for Video Editing in Adobe Premier Pro?

Premier Pro does not make use of multiple GPUs in your system, so you won’t benefit from more than one GPU.

Apart from the GPU, what about the rest of my system?

Great question!

If you’re trying to figure out how to spec the rest of your system, we recommend taking a look at our Best Hardware for GPU Rendering and Building a PC for Video Editing Articles.

We go through our top picks for not only rendering GPUs, but the rest of your PC’s components as well.

We also have a detailed guide to finding the best CPU for rendering, and even a workstation PC build creator if you want to save as much time and effort as possible!

Best Graphics Card For Editing & Rendering: Our Picks

Keep in mind: We are recommending GPU Variants here, such as the RTX 2060 Super. There are lots of different Board-Partners that offer GPUs based on this Chip by Nvidia. Board-Partners include MSI, Gigabyte, EVGA, Asus, among others.

GPUs based on the same chip will roughly perform the same, so you can easily get an EVGA RTX 2060 Super and expect it to perform exactly as an MSI RTX 2060 SUPER, give or take 2-3%.

Main differences here come down to cooling solution, factory overclocking, RGB and looks, as well as Monitor connectors. The underlying chip, though, is the same.

#1 – Best Value Editing & Rendering GPU: Nvidia RTX 2060 Super

MSI Nvidia RTX 2060 Super

Image-Source: MSI


  • CUDA Cores – 2176
  • Tensor Cores – 272
  • RT Cores – 34
  • VRAM – 8GB GDDR6
  • GPU Clock – 1470 MHz (Base)

If you’re on a tight budget but you still want to get good performance in editing and rendering tasks for the money, the RTX 2060 Super would be our first pick.

Compared to the other GPUs in its price range, it offers superb performance across the board, for gaming and professional work alike. (For gaming, though, the AMD RX 5700 is definitely the better option.)

Boasting a modest amount of RT and Tensor cores with a pretty significant number of CUDA cores, the RTX 2060 Super is more than adequate for editing 1080p and 1440p video.

In OctaneBench, the card scores roughly 205, which is considerably better than both the Quadro RTX 3000 (at 149) and the Quadro RTX 5000 (at 184).

This means the raw compute power available in the 2060 Super outstrips that of even Quadro RTX cards that cost several times its price, which certainly isn’t bad.

These scores place the RTX 2060 Super firmly in the mid-range of single GPU cards in compute performance.

For those who are just starting out with editing & rendering or who don’t have literal thousands of dollars to invest in the hardware yet, the RX 2060 Super is the perfect place to begin.

Want dual-GPU? Get a blower-style RTX 2060 Super instead

#2 – Best High-End Editing & Rendering GPU: Nvidia RTX 2080 Ti

EVGA RTX 2080 Ti

Image-Source: EVGA


  • CUDA Cores – 4352
  • Tensor Cores – 554
  • RT Cores – 68
  • VRAM – 11GB GDDR6
  • GPU Clock – 1350 MHz (Base)

If you aren’t on a tight budget but don’t need ECC and don’t want to sell a kidney to afford a graphics card, get the Nvidia RTX 2080 Ti.

For gaming purposes, the RTX 2080 Ti doesn’t really stack up in terms of performance-per-dollar when compared to its non-Ti counterparts.

However, it does boast a rather significant boost in raw compute performance over said non-Ti counterparts, which makes it a more compelling option for Editing and Rendering.

In OctaneBench, the RTX 2080 Ti scores a nice 302, placing it firmly on the high-end of single-GPU cards in terms of single-GPU performance.

The 2080 Super, meanwhile, languishes at 233, whereas the stock 2080 is even lower, at 220.

All this considered makes the RTX 2080 Ti our top pick in this tier. If you’re going to be working with 1440p/4K video or highly-demanding rendering tasks on the regular, the 2080 Ti is one of the best cards for the job.

Want a blower-style cooler for multi-GPU? Grab this card instead

#3 – Best High-End Pro GPU: Nvidia Quadro RTX 6000

PNY Quadro RTX 6000

Image-Source: PNY


  • CUDA Cores – 4608
  • Tensor Cores – 575
  • RT Cores – 72
  • VRAM – 24 GB GDDR6 (ECC)
  • GPU Clock – 1440 MHz (Base)

Last but certainly not least, let’s take a look at the Quadros.

In terms of raw performance, the Quadro RTX 6000 isn’t going to be much better than the RTX 2080 Ti outside of VRAM-constrained scenarios.

This is reflected in OctaneBench, which shows a mere 308 over the 2080 Ti’s 302- an incredibly marginal difference. But if you’ve read the article, you probably figured that part out already.

The main incentive for getting a Quadro RTX card is the enhanced software support, stability, and ECC RAM support.

If you want something in this price/performance range but the Quadro RTX 6000 doesn’t offer exactly what you’re looking for, consider the three alternatives provided below.

If this card looks a little VRAM-choked for your purposes, opt instead for the Quadro RTX 8000. Most of the specs are the same, but VRAM is doubled.

Performance differences in non-VRAM bound scenarios are incredibly marginal.

If ECC doesn’t matter for your workoad, you can also go much cheaper and get the Nvidia Titan RTX, which has virtually the same specs as well.

If ECC doesn’t matter for your workload and you don’t mind paying around the same price, also consider the Titan V.

It doesn’t have RT cores, but it does have ample compute power- the best of any single GPU, according to OctaneBench– and it still has even more Tensor and CUDA cores to work with. It does have less VRAM, though.


That’s about it! What GPU or other PC-Parts are you thinking of buying?

Find a new friend on the CGDirector Forum! Expert Advice & PC-Build Planning with a warm and friendly Community! :)

Christopher Harper - post author

I have been a passionate devotee to technology since the age of 3, and to writing since before I even finished high school.

These passions have since combined into a living in my adulthood, and has made writing about myself very satisfying.

If you need any assistance, leave a comment below: it’s what I’m here for.

Also check out our Forum for feedback from our Expert Community.


Hi Alex, I’m also working in Premiere Pro and looking at an upgrade (though somewhat limited by my older Lenovo ThinkStation) from a Quadro K620 to a Quadro P2200 based on an i-6700 CPU. With PP sporting Mercury Playback Engine GPU Acceleration (CUDA) for playback am I right in thinking that more CUDA cores will help editing as well as rendering? I have also been plagued with failed renders in AME, mostly Selector: 9, Error code: -1609629690 which from my research says ‘underpowered GPU’. Have you come across this before and do you think the upgrade would help with GPU Accelerated (CUDA) rendering too? K620: 384 CUDA cores P220: 1280 CUDA cores. Just debating spending around £500 to upgrade GPU and PSU or wait and spend two or three times that on a whole new rig – is it worth doing that and then getting a beefier CPU too? Thanks for your help and being so active in the comments!

Alex Glawion

Hey Ben,
Quadros are not among the top cards to get for premiere pro, you’ll have higher value with an rtx / gtx type gpu. It’s true that you’ll need more cuda cores for higher performance, but of course more vram, higher clock speeds of the gpu too will go hand in hand with the higher amount of cuda cores to improve your experience.

I am not sure if you are limited to lenovo parts, but if you can get you hands on, say, a 2060 super or 2070 super, you’ll have better performance than with the p2200.

That said, this is for premiere. If you have other workloads like CAD, then the Quadro might well perform better.



Hi Alex, thanks for your reply. I’m a bit restricted on my current build as it has a puny 250w PSU and I can only find a compatible upgrade to 400w (Lenovo Thinkstation P310) hence going for the P2200 needing a reasonable 75w of power for the specs (powered straight off the board). Is there a more powerful RTX/GTX card that you can think of that might be comfortable on a 400w PSU? I only have 2 x internal SSD’s so I don’t think the power requirements for the whole rig are that high. Thanks for the tips. Ben

Alex Glawion

There is the possibility to get a second psu and run the gpu over that psu. But you should know your way around PCs if you decide to do this.

That said, if you really have a TDP limit of below 100W, then the p2200 is a good gpu to chose. Or the GTX 1650, but they will probably both be similar in performance.


Hi, at the moment I am using a Nvidia Quadro K4000 in Premiere Pro and I would like to know if I will notice difference with a RTX 2060/70/80 Super. I normally encode 4k video with not a lot of effects. Cpu is Ryzen 3900X, 32 GB RAM, SSD M2, …..
I have 10 bit monitor but I can leave it for 8 bit if encoding performace will better.

Alex Glawion

Hey Marco,
Premiere Pro is mostly dependent on the CPU’s performance, but there are some effects that are GPU accelerated, also in one of the most recent versions, Adobe added some Nvidia GPU support for decoding footage.

That said, I’d say you will not see a huge performance jump between a K4000 and a 2080 Super, as the GPU really is not used all that much in premiere on average.



Hi Alex, I’ve done some test during this days with the K4000 and the last version of Premiere Pro. Gpu is used 90/98% during the encoding phase and cpu only 10/15%. If I try to force software encoding, cpu goes to 40/50% but the total time is longer than Gpu (mercury engine). I ordered an rtx 2060 super… i am curious to see if it is better


i will get RTX 2080 SUPER is ok or i need to go with 2080ti. Or do you have a better suggestion?

Alex Glawion

Hey Apdlio,
The 2080 Super is an excellent GPU for Rendering. The value is higher than the 2080Ti, but it does “only” come with 8GB of VRAM. For most Scenes this will easily suffice though. If your scenes aren’t crazy complex, I’d say go for it!



Hi, I am building a custom PC that I will be using mostly for video editing and very little gaming. The video editing software I use is Davinci Resolve and I am potentially looking into using Adobe Premier as well.
My custom build will be an AMD Ryzen 3900X, 64GB G.Skill DDR4 Trident Z Neo 3600Mhz, 1TB NVMe M.2 SSD… but I am a little confused with the GPU as i have heard a lot of mixed reviews with certain GPUS. I am specifically looking at the ASUS ROG Strix GeForce RTX 2080 Ti OC Edition and the ASUS ROG Strix Radeon RX 5700 XT OC Edition.
Which one do you recommend specifically for video editing and why?

Alex Glawion

Hey Neftali,
The 2080Ti per se is much stronger than the 5700XT, it is usually also better supported by various industry apps. Adobe Software tends to run smoother with nvidia GPUs, as they optimize more for nvidia than AMD (so far). this might change when AMD takes back the performance crown or even comes closer to nvidias higher end gpus.

If you have the means for an 2080ti, that’s the GPU I’d pick.



Nice article! I’m building a day trading computer using a Ryzen 9 3900x. I’m not sure whether I should be looking at consumer gaming cards or workstation cards. It has to run 4 – 4k monitors 8 hrs a day, 5 days a week and be durable and reliable. Dozens of charts and many tables all with streaming realtime data. About 10% of its use is for photo editing in Lightroom and Photoshop, but this will not occur while I’m working in the market. However, the card must provide 10 bit color. I’ve been considering the Radeon Pro WX 5100 or the new W5500. I don’t need fancy, just something I can depend on and it would be a plus if it doesn’t draw a lot of energy. Please let me know what you think of the cards I mentioned or if there are better options in that price range.

Thank you,

Alex Glawion

Hey Michael,
As a matter of fact we are currently reviewing the w5500. For it’s price point it performs quite well, being about on par with a Quadro p2200 in most benchmarks.

It has 4 display port connectors and 10bit support and will be able to handle your 4 4k monitors without a problem.

Another possibility might be an nvidia RTX card, such as the 2060 super which sports cuda cores. Adobe apps usually run better on cuda acceleration but the differences to AMD’s GPUs are marginal.



Thank you for your help!


hey, thanks for the article, so I was confusing about choosing between 1080 ti (used) or 2070 Super, in my country they had the same price, I just start learning 3d using the blender, and mostly do an after effect, my consideration is the memory and CUDA Cores. so can you suggest to me?

Thank you.

– Sorry for my bad English

Alex Glawion

Hey Ngep2,
For most gpu rendering workloads those two are pretty much on par. The 1080ti having more vram but the 2070 super having a new architecture, both show about the same performance in rendering.

The 2070 of course has the added benefit of Raytracing cores that might come in handy in render engines that will make use of them in the future. Redshift for example is currently implementing the use of RT cores for some considerable speedups.

Blender with its new optix implementation too shows nice speedups on RTX gpus, so I would recommend going with the 2070 super over the 1080ti.


Sam Walton

I’m looking to build a system for a couple different purposes. The main purpose will be 3d modeling with a focus on characters both real-time and pre rendered. The other uses will be vfx and maybe a bit of animating as well. What would you suggest for a gpu? I was looking at a single Rtx quadro 5000 but after reading your article it sounds like it might be better to get multiple 2080ti’s for my purpose.

Alex Glawion

Hey Sam,
Going quadro really only makes sense if you are using software that has features that run better on quadro or you are in an enterprise environment. I suggest getting a non-quadro for any DCC Aplication such as 3dsmax, cinema 4d, blender, maya and so on. If you are into CAD then that is another matter, but from your question I am guessing you are not.

Multiple GPUs I recommend only for the use of gpu rendering in render engines such as redshift, octane or vray or f-storm. Any realtime apps will probably not make any or any good use of multiple gpus unless you have them hooked up in a sli config and your app supports this.

Here’s a quick build you can take a look at:

CGDirector.com Parts List: https://www.cgdirector.com/pc-builder/?=Db1Gf0i0jib

CPU: AMD Ryzen 9 3950X 3.5GHz 16-Core Processor ($749.00)
CPU Cooler: be quiet! Dark Rock Pro 4 AM4 ($100.61)
Motherboard: Gigabyte X570 Aorus Elite ATX AM4 ($184.99)
GPU: NVIDIA RTX 2080 TI 11GB – MSI Gaming X ($1249.00)
Memory: 64GB (4 x 16GB) Corsair Vengeance LPX DDR4-3200 CL16 ($302.54)
Storage PCIe-SSD: Samsung 970 EVO PLUS 1TB M.2 Solid State Drive ($199.99)
Power Supply: Corsair RMx Series RM650x 650W ATX 2.4 Power Supply ($109.99)
Case: Corsair Carbide Series 275Q ATX Mid Tower Case ($89.99)
Total: $2986.11



Thanks for the reply Alex and the suggested specs for a build. What would you suggest if I were just doing heavy rendering instead of just a real-time workflow? What I’m looking to do is to try and keep the system somewhat flexible to where I can have a good modeling, vfx, and animation machine that can handle some decent rendering as well. I’m not really worried about price right now I’m just wanting to have an idea of what a moderate and somewhat high end spec PC would look like, thanks.

P.S. I love the price of your current specs.

Alex Glawion

Hey Sam,
This depends on the type of render engines you want to use. If they are cpu engines then of course having a cpu with as many cores as possible is the way to go. The currently best cpus here are the 3rd gen Threadripper CPUs. 3990x with 64! cores, 3970x with 32 cores and the 3960x with 24 cores. You will need a TRX40 Motherboard for these.

If you are using gpu render engines such as redshift or octane, the type of cpu wont make a huge difference, but the number gpus will. As render performance here scales almost linearly with the number of gpus you have in your system (and the performance of the individual gpus of course), having more gpus and higher-tier gpus (such as the 2080ti) will be the way to go. Note that more than 2 gpus will need a hedt platform (because of the pcielanes) and that again means you’ll have to go either Threadripper (2nd or 3rd gen) or Intel X-Series cpus (2066 socket).

The other components in your pc can stay the same pretty much, you’ll just have to get a new cpu+mainboard combo.

Hope this helps,

Sam Walton

Thanks for the info Alex.

Newsletter Subscribe CGDirector Logo