Cinebench R15 Scores (Updated Results)

Last updated on December 8th, 2018, 16 comments

Cinebench Scores are a great way to get an impression of how fast a CPU is in different types of workloads.

No matter if you are planning on building a Computer for 3D Rendering, Gaming, Streaming or would just like to see how different CPUs compare to each other, a clean Cinebench Scores list of the most current CPUs, frequently updated & neatly sorteable, should put a smile on anyone’s face.

As the Cinebench Benchmark tests the Multi-Core Performance as well as the Performance of a single core (usually under Turbo-Boost), it is a great Benchmark for finding the best Processors for your needs.

That could be heavily Multi-Core optimized workloads, such as Rendering, or heavily Single-Core restricted workloads, such as Viewport-Updating as in Cinema 4D or (still) Gaming.

So without further ado here it is, the Cinebench Scores List:

Cinebench Scores List

CPU Name# CoresGhzCb SingleCb MultiPrice $
CPU Name# CoresGHzCb SingleCb MultiPrice $
Intel i5 7600K43.8176701239
Intel XEON E5-2650 v4122.212815891200
AMD Ryzen R7 1800X83.61611613349
AMD Threadripper 1900X83.81681711450
Intel i7 7820X83.61761734599
AMD Ryzen R7 2700X83.71801783369
Intel i7 6950X103.014717881649
Intel XEON E5-2687W v4123.013818602444
Intel i9 9900K83.62182077650
Intel i9 7900X103.31932169999
Intel i7 6900K83.215415621049
AMD Threadripper 1920X123.51682431799
Intel XEON E5-2699 v4222.212024604500
AMD Threadripper 2920X123.51762604649
Intel i9 7940X143.118828491450
AMD Threadripper 1950X163.41663062750
Intel i9 7960X162.818431611700
AMD Threadripper 2950X163.51793210850
Intel i9 7980XE182.618434551900
Intel i9 9980XE183.019937991979
Intel i9 7920X122.918824381200
AMD Threadripper 2970X243.017043231299
Intel i7 9700K83.62121542550
AMD Ryzen R7 270083.21651526300
AMD Ryzen R5 140043.2134787169
AMD Ryzen R5 1500X43.5152803174
Intel i5 840062.8161966179
Intel i7 7740X44.3196986329
Intel i7 7700K44.2191996349
Intel i5 9600K63.72001068370
Intel XEON E5-2620 v482.11251096420
Intel i7 6800K63.41461096419
AMD Ryzen R7 1700X83.41451540309
AMD Ryzen R5 160063.21451147189
AMD Ryzen R5 1600X63.31611250219
AMD Ryzen R5 260063.41631307189
Intel i7 5960X83.017713241069
Intel i7 7800X63.51841333389
AMD Ryzen R5 2600X63.61761373209
Intel i7 8086K63.72151386425
AMD Ryzen R7 170083.01371426299
Intel i7 8700K63.72051428359
Intel i7 6850K63.61561235570
AMD Threadripper 2990WX323.017452241799

Download Cinebench R15 here

Go get Cinebench R15 Benchmark for you System, it’s free and test-drive your CPU to be able to compare it with the ones in this list.

Also, It’s good to know if your CPU actually delivers what it is supposed to, or if you might be throttling it or running it sub-optimally.

Cinebench download here.

How to read these Scores

Ok, some more Info about these Cinebench Results: Cinebench Scores are linear.

This means a CPU that scores 2000 Cinebench points will be twice as fast (in Cinema 4D Rendering) as a CPU that scores 1000 Cinebench points.

So far so good.

What is a good Cinebench Score?

All these Scores are difficult to grasp if you don’t put them into context.

I am asked what a good Cinebench Score actually is almost every day and as so often there is no definite answer. It depends on what the CPU you are benching is supposed to be able to do.

Are you mainly writing texts in Open Office? A Cinebench Score of 250 is good. For your specific use case!

Are you rendering a lot in 3D Software? In this case, a Cinebench Score would be good, if the CPU that is being benched renders fast enough for you to finish your projects on time.

Usually a dedicated rendering PC should have upwards of 2000 Cinebench points. The more the better.

Are you mainly gaming on your Computer? Then you will have to look at the Cinebench Single Core Score. For 4K 90FPS gaming you should have 170 Cinebench Single Core Points or higher.

In addition you would need upwards of 4 Cores. That would mean you should have a Multi-Core Cinebench Score of 700 or more.

Cinebench does not scale well in high-score (5000+) area

This wasn’t a problem when CPUs used to reach only around 1000 Cinebench Points but becomes a problem more and more nowadays, especially with the extreme high-core count CPUs such as the AMD Threadrippers or Server CPUs such as Dual / Quad / Octa Intel XEONs and AMD Epycs.

Because Cinebench divides the rendering task into buckets, there is a possibility that at the end of the benchmark run, there are only one or two buckets left that are actually rendering because these buckets might take a bit longer (maybe because the rendered Image is more complex in these buckets).

Of course this means, that the rest of the cores lie dormant during this time, and this can distort the result extremely.

We can say the same about the startup time of the rendering task. It might take a half a second or a second to distribute all the rendering tasks to the cores, and considering that the entire benchmark run only takes about 5 seconds on 64 Cores, half a second can make a huge difference.

This is also why you don’t see many Server-Grade CPUs with high-core counts being featured in Cinebench R15 Benchmarks.

Multi-Core vs Single-Core Cinebench R15 Scores

The Cinebench-Multi Score uses all available CPU-Cores for rendering. Cinebench-Single Scores will only use one CPU-Core for rendering.

Why would we need the single-core score?

One simple reason:

There are lots of Software-Parts in 3D-Softwares and Games that rely and can only be calculated on a single core, and won’t run faster if more Cores are available.

An example:

Think about simulating a Liquid. Every simulated frame depends on the previous frames.

You can’t tell 10 cores to simulate 10 frames, because you have to simulate all frames up until the frame you want to simulate, or else you don’t know what the liquid is doing or where it is at that particular frame.

This means, only one Core at a time can simulate a coherent liquid.

Here you will need a maximum Single-Core Cinebench Score.

There are ways around this of course, as in using multiple liquids that intersect each other and together look like a higher resolution liquid.

This then could be calculated on multiple CPU-Cores, every individual liquid parts on another core.

Here you would want a maximum Multi-Core Cinebench Score.

Or take a Game-Engine:

As there is so much dependent on User interaction, the CPU has to wait until the User actually fires off a Bullet or opens a door to a new area, meaning the CPU can’t use its other cores to pre-calculate what you will be doing, because it can’t know what you will be doing.

Again, a high Single-Core Cinebench Score is of great use here.

High Single-Core Cinebench R15 Scores makes PC snappier

Another great example, why the Single-Core Cinebench Score is very important for CG Artists, is because the 3D Viewport in 3D Softwares such as Cinema 4D, Maya, 3dsmax, Blender and the like, is very dependent on the speed of a single CPU-Core.

As soon as you have a hierarchy of deformers and modifiers on a mesh, only one CPU-Core can calculate the form of this mesh.

The CPU Core has to step through the hierarchy of your deformers and modifiers until it reaches the end of the chain.

Cinebench Scores - Single Core Hierarchy

No other CPU-Cores can help in this matter, as only the one core that is calculating the mesh hierarchy knows how the mesh actually looks at a given hierarchy and calculates the form of a mesh that is being modified by deformers.

Multiple Cores are useful if you have multiple meshes that can be worked on independently by different CPU-Cores.

Here, depending on the Software, a high Multi-Core Cinebench Score will be of use.

The 3 steps in finding the CPU you need by looking at the Cinebench Scores

1. Value: Know your budget and see what CPU has the highest Cinebench Scores in this Price range
2. Multi-Core Cinebench Score: The higher the better. Good for CPU-Rendering, and tasks that are parallelizeable. Good for when the Computer renders on its own, without you having to sit and watch it work.
3. Single-Core Cinebench Score: Higher is better. Best for Viewport Performance and interaction with the PC. This usually impacts your active working speed & snappiness on the PC the most.

Multi-Core to Single-Core Cinebench Score ratio

This is an interesting metric, as one would think the Multi-Core Cinebench Score should be exactly number-of-cores x the single-core Cinebench score.

Usually though the multi-Core Cinebench Score is somewhat lower than this, since features such as Turbo-Boost play a large role when using only one core.

Turbo-Boost is when the CPU automatically clocks higher when using one core (or not all cores), as there is more headroom in terms of power draw and temperature.

So a single core could clock as high as 5 GHz but an all-core bench will run at only 4 GHz on all cores.

This is the main reason why the Multi and Single-Core Cinebench R15 Scores can’t be directly calculated.


Intel has had a single-Core advantage for some time now, meaning if you are looking for a CPU, that you can actively work on as fast as possible, with the System reacting as snappy as possible, it is usually a good Idea to get an Intel CPU such as the i7 8700K or i7 8086K.

These CPUs will be amongst the highest Single-Core Cinebench Scores in the list.

Beware though, these two CPUs don’t have the best value in terms of multi-Core Performance and only have 16 pcie-lanes, so rendering with lots of GPUs would require a different CPU for maximum speed.

AMD has recently introduced the RYZEN CPU Family, which has great multi-Core Value but doesn’t quite reach Intel in terms of Single-Core Speeds yet.

RYZEN and Threadripper CPUs are excellent for CPU Rendering and have the highest Mulit-Core Cinebench Scores but have a slight Single-Core disadvantage, meaning they might not be as snappy in an active working environment.

Of course we are talking HEDT here, this will only be noticeable in fairly complex use cases and 3D-Scenes.

Head over to “Best Computer for Cinema 4D” and “Best Hardware for GPU Rendering” for more in-depth insight into these highly interesting topics.

As there are so many different Processors available and being updated constantly, if I missed any that you are interested in, let me know and I’ll add them to the list!

Cinema 4D Benchmark

As Cinebench R15 is based on the Cinema 4D CPU Render Engine, it is of course a great way of benchmarking Cinema 4D on your Hardware, if this is a Software that you use or are planning on using.

Cinema 4D is very similarly structured as many other 3D-Software such as 3DS Max, Blender or Maya, as it relies heavily on similar workflows and Hardware usage.

Cinebench in itself is often used as a Benchmark for benching all kinds of 3D Render Software and therefore the go-to Benchmark in this field of work.

Cinebench interesting picks

Let’s take a look at some of the most interesting CPUs in the Cinebench Scores.

AMD Ryzen Threadripper 2990WX: This CPU is an absolute Multi-Core Monster. Scoring over 5000 Cinebench Points, it easily takes the Cinebench Score lead.

It has 32 Cores and 64 Threads a base clock of 3,2 GHz with an all core precision boost of 3,4 GHz and a precision boost overdrive on a single core up to 4,2 GHz.

This CPU is the top pick for Multi-Core optimized workloads, especially if it is utilized as a dedicated rendernode.

CPU Rendering, Encoding, anything that takes full advantage of extreme Core Counts. This highest Cinebench Score has a 1500 Point lead to Intels highest scoring Cinebench CPU, the i9 7980XE which is even more expensive.

AMD Ryzen 2700X: With 8 Cores, 16 Threads and a precision boost up to 4,3 GHz, this CPU is great for Gaming, good for Rendering and good for active Work in all kinds of computer graphic and 3D Softwares.

It trades blows with the i7 8700K, though is a lot cheaper and has a much higher performance per dollar ratio.

Intel i7 8700K & 8086K: The i7 8700K is an extremely popular gaming and hogh-core clock optimized CPU, great for active work in 3D Applications with excellent Viewport snappiness. Gaming workloads are usually unmatched by this i7 unlocked CPU.

The 8086K is an anniversary edition CPU is essentially a well binned, overclocked 8700k. Expect this one to become rather hot in demanding workloads.

Intel i9 7980XE: Intels currently leading Cinebench Score CPU has 18 Cores and 36 Threads that clock at only 2,6 GHz base and turbo boost up to 4,32GHz on select cores.

It is great for Multi-Core workloads, though at the moment would be second pick compared to the AMD Threadrippers, that are unbeatable in terms of performance / dollar.

What Processor are you thinking of buying?


Alex from CGDirector - post author

Hi, I am Alex, a Freelance 3D Generalist, Motion Designer and Compositor.

I have built a multitude of Computers, Workstations and Renderfarms and love to optimize them as much as possible.

Feel free to comment and ask for suggestions on your PC-Build or 3D-related Problem, I'll do my best to help out!


Dwa Sokoły

Hi Alex,
I’ve found your site very interesting according to good quality rendering benchmarks scores and lot’s of information. I’m also gathering some scores of Cinebench R15 and see something strange whith Intel XEON E5-2699 v4 (22c) Cinebench score – my founded scores are 150 (1T) and 3240 (MT) – there is about 30% more than your score – my numbers are also close to estimate calculate based on other Xeons scores..

Could you check these numbers for Xeon E5-2699? What kind of source of these scores you are? Of course I could be wrong also but this score looks suspiciously.

Best Regards,


Hey Alex,
I’m planning to build a 3dsMax PC in India, I’m struck between Intel or AMD. Most of the people are suggesting Intel i5, however most of the online forums suggest AMD Ryzen.

My requirement is to use only 3dsMax with rendering for learning and a less of production work.

If you don’t mind, Could you please help me out by considering my budget for CPU is $250-$300.

CPU: ?
Graphic Card: ?
Motherboard: ?
RAM: ?

If possible you can recommend any specific products on my personal email.

Thanks in Advance

Gary Abrehart

On your Cinebench results you don’t have the OpenGL scores, any chance this could be added I find it very useful.